toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) McCarthy, T.; Murray, K.; Sharma, K.; Johansson, O. url 
  Title Preliminary results of a long-term study of snow leopards in South Gobi, Mongolia Type Journal Article
  Year 2010 Publication Cat News Abbreviated Journal  
  Volume Autumn Issue 53 Pages 15-19  
  Keywords snow leopard, Mongolia, monitor, population, Panthera, Snow Leopard Trust, Snow Leopard Conservation Fund, South Gobi, ecology, radio collar, GPS-satellite collar, home range, camera trapping, fecal genetics, occupancy modeling  
  Abstract Snow leopards Panthera uncia are under threat across their range and require urgent conservation actions based on sound science. However, their remote habitat and cryptic nature make them inherently difficult to study and past attempts have provided insufficient information upon which to base effective conservation. Further, there has been no statistically-reliable and cost-effective method available to monitor snow leopard populations, focus conservation effort on key populations, or assess conservation impacts. To address these multiple information needs, Panthera, Snow Leopard Trust, and Snow Leopard Conservation Fund, launched an ambitious long-term study in Mongolia’s South Gobi province in 2008. To date, 10 snow leo-pards have been fitted with GPS-satellite collars to provide information on basic snow leopard ecology. Using 2,443 locations we calculated MCP home ranges of 150 – 938 km2, with substantial overlap between individuals. Exploratory movements outside typical snow leopard habitat have been observed. Trials of camera trapping, fecal genetics, and occupancy modeling, have been completed. Each method ex-hibits promise, and limitations, as potential monitoring tools for this elusive species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ Serial 1151  
Permanent link to this record
 

 
Author (up) Trepanier, L.A.; Cribb, A.E.; Spielberg, S.P.; Ray, K. url 
  Title Deficiency of cytosolic arylamine N-acetylation in the domestic cat and wild felids caused by the presence of a single NAT1-like gene Type Journal Article
  Year 1998 Publication Pharmacogenetics Abbreviated Journal  
  Volume 8 Issue 2 Pages 169-179  
  Keywords Acetylation; Amino; Acid; Sequence; Animal; Arylamine; N-Acetyltransferase; metabolism; Base; Blotting; Southern; Carnivora; genetics; Cats; Cytosol; enzymology; Dna; Human; Isoenzymes; Liver; Molecular; Data; Polymerase; Chain; Reaction; Rabbits; Homology; Nucleic Acid; Substrate; Specificity; Support; U.S.Gov't; P.H.S.; browse; nucleic; us; government; 130  
  Abstract The purpose of this study was to determine the molecular basis for a relative deficiency in the cat of cytosolic arylamine N- acetyltransferase (NAT), an enzyme family that is important in the metabolism of xenobiotics and that normally consists of at least two related enzymes, NAT1 and NAT2. N-acetyltransferase in feline liver showed high affinity (mean Km = 2.1 microM) for p-aminobenzoic acid, an NAT1 selective substrate in humans and rabbits, but showed a very poor affinity (mean Km > 10 mM) for sulfamethazine, an NAT2 selective substrate in humans and rabbits. Immunoreactive N-acetyltransferase was detected in feline liver, bladder and colon using an NAT1-specific antipeptide antibody, but was not detected in any tissues using an NAT2- specific antibody. Southern blot analysis of genomic DNA demonstrated a single band in domestic cats using each of six restriction digests; single bands were also found on Southern blot analysis of six wild felids. The deduced amino acid sequence of the central portion of feline N-acetyltransferase, obtained by polymerase chain reaction amplification in both domestic cats and seven wild felids (lion, tiger, lynx, snow leopard, bobcat, Asian leopard cat and cheetah), contained three residues, Phe125, Arg127, and Tyr129, which determine NAT1-like substrate specificity in humans. These results support the conclusion that cytosolic arylamine N-acetylation activity is low in the cat because of the presence of a single N-acetyltransferase that has substrate specificity, immunogenicity and sequence characteristics similar to human NAT1, and that the unusual presence of only a single N- acetyltransferase gene appears to be a family wide trait shared by other felids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-314x ISBN Medium  
  Area Expedition Conference  
  Notes Document Type: eng Approved no  
  Call Number SLN @ rana @ 345 Serial 968  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: