toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Hellstrom, M., Kruger, E., Naslund, J., Bisther, M., Edlund, A., Hernvall, P., Birgersson, V., Augusto, R., Lancaster, M. L. pdf 
  Title Capturing environmental DNA in snow tracks of polar bear, Eurasian lynx and snow leopard towards individual identification Type Journal Article
  Year 2023 Publication Frontiers in Conservation Science Abbreviated Journal  
  Volume 4 Issue 1250996 Pages 1-9  
  Keywords nuclear eDNA, snow, snow track, individual, polar bear (Ursus maritimus), Eurasian lynx (Lynx lynx), snow leopard (Panthera uncia), sampling protocol  
  Abstract Polar bears (Ursus maritimus), Eurasian lynx (Lynx lynx) and snow leopards (Panthera uncia) are elusive large carnivores inhabiting snow-covered and remote areas. Their effective conservation and management are challenged by inadequate population information, necessitating development of novel data collection methods. Environmental DNA (eDNA) from snow tracks (footprints in snow) has identified species based on mitochondrial DNA, yet its utility for individual-based analyses remains unsolved due to challenges accessing the nuclear genome. We present a protocol for capturing nuclear eDNA from polar bear, Eurasian lynx and snow leopard snow tracks and verify it through genotyping at a selection of microsatellite markers. We successfully retrieved nuclear eDNA from 87.5% (21/24) of wild polar bear snow tracks, 59.1% (26/44) of wild Eurasian lynx snow tracks, and the single snow leopard sampled. We genotyped over half of all wild polar bear samples (54.2%, 13/24) at five loci, and 11% (9/44) of wild lynx samples and the snow leopard at three loci. Genotyping success from Eurasian lynx snow tracks increased to 24% when tracks were collected by trained rather than untrained personnel. Thirteen wild polar bear samples comprised 11 unique genotypes and two identical genotypes; likely representing 12 individual bears, one of which was sampled twice. Snow tracks show promise for use alongside other non-invasive and conventional methods as a reliable source of nuclear DNA for genetic mark-recapture of elusive and threatened mammals. The detailed protocol we present has utility for broadening end user groups and engaging Indigenous and local communities in species monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1738  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: