toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khatiwada, J.R. & Chalise, M.K. url 
  Title Status of snow leopard and conflict perception in Kangchenjunga Conservation Area, Eastern Nepal Type Journal Article
  Year 2006 Publication Nepalese Journal of Zoology Abbreviated Journal  
  Volume 1 Issue 1 Pages 1-8  
  Keywords Uncia uncia, Kangchenjunga Conservation Area, livestock depredation, blue sheep  
  Abstract (down) Kangchenjunga Conservation Area (KCA) is situated in the Taplejung district at the north-eastern region of Nepal. Livestock keeping is the main activity of people for making a living amidst a conflict with snow leopard (Uncia uncia). Each year snow leopard kills a number of livestock resulting significant economic losses for the poor people living in this remote area. Unless the people – snow leopard conflicts is well understood and appropriate conflict management activities are implemented, the long run co-existence between people and snow leopard –especially the existence of snow leopard in this part of the world–will be in question. This has now become an utmost important as the aspiration of the people for economic development has risen significantly and the area has been open to tourism. Study was done by counting snow leopard signs walking systematically in total 18 snow leopard sign transects covering 18.01 km in length in three sites, i.e. Lonak, Khambachen and Dudhpokhari of the Conservation Area. The average sign density was 12.63/km. The livestock depredation by snow leopard for one year (2005-06) was studied by interviewing the herders to understand the responsible and specific bio-physical and economic factors. The study revealed that sub-adult yaks were mostly hunted by snow leopard. Cattle's' winter (December-April) pastures are most vulnerable sites for predation. Presence of bushes, forest and boulders and rugged mountain crevices make good hides for snow leopard. The study also showed that a lax animal guarding system was significantly responsible for high livestock depredation by snow leopard. Blue sheep was observed by walking in selected trails and from vantage points. A total of 354 individual sheep of different age and sex of 14 different herds were recorded during the study period. The study showed that improvement in livestock guarding system should be adopted as the most important activity. However despite the importance of livestock in the KCA it is still not well understood why the herders neglect for proper livestock guarding. Proper guarding system required in winter pastures to reduce the depredation pressure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes September Approved no  
  Call Number SLN @ rana @ Serial 1319  
Permanent link to this record
 

 
Author Bobrinskiy N.A. url 
  Title Mountains of Central Asia Type Miscellaneous
  Year 1967 Publication Abbreviated Journal  
  Volume Issue Pages 296-321  
  Keywords Middle Asia; mountain; tien shan; Pamir; Hissar ridge; Turkestan ridge; Kopet-Dag ridge; Animals; plants; Issyk-Kul lake; Sary-Chelek; spiders; birds; lizards; marmots; wild sheep; ibex; snow leopard.; 6330; Russian  
  Abstract (down) It provides a zoogeographical description of Central Asia mountains: Tien Shan (west and east), Pamir, the Turkestan and Hissar ridges, and ruinous mountains in Kyzylkum. Distribution of various animal species over the area under study is described. Data concerning Central Asia sheep, ibex, and snow leopard in the alpine meadow zone, and data concerning the otter (in the Tupalang river basin) and grey partridge is presented. The author noted that generally fauna of Tien Shan, Hissar, and Pamir is similar to that of Inner Asia. The other type of fauna more similar to that of Transcaucasia is typical for Kopet-Dag.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Full text available in RussianJournal Title: Fauna and nature of the USSR. Approved no  
  Call Number SLN @ rana @ 611 Serial 180  
Permanent link to this record
 

 
Author Thapa, K., Schmitt, N., Pradhan, N. M. B., Acharya, H. R., Rayamajhi, S. pdf 
  Title No silver bullet? Snow leopard prey selection in Mt. Kangchenjunga, Nepal Type Journal Article
  Year 2021 Publication Ecology and Evolution Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords blue sheep, common leopard, fecal, genetic analysis, snow leopard, wolf, yak  
  Abstract (down) In this study, we investigated the impact of domestic and wild prey availability on snow leopard prey preference in the Kangchenjunga Conservation Area of eastern Nepal-a region where small domestic livestock are absent and small wild ungulate prey are present. We took a comprehensive approach that combined fecal genetic sampling, macro- and microscopic analyses of snow leopard diets, and direct observation of blue sheep and livestock in the KCA. Out of the collected 88 putative snow leopard scat samples from 140 transects (290km) in 27 (4x4km2) sampling grid cells, 73 (83%) were confirmed to be from snow leopard. The genetic analysis accounted for 19 individual snow leopards (10 males and 9 females), with a mean population size estimate of 24 (95% CI: 19-29) and an average density of 3.9 snow leopards/100km2 within 609km2. The total available prey biomass of blue sheep and yak was estimated at 355,236 kg (505 kg yak/km2 and 78kg blue sheep/km2). From the available prey biomass, we estimated snow leopards consumed 7% annually, which comprised wild prey (49%), domestic livestock (45%). and 6% unidentified items. the estimated 47,736 kg blue sheep biomass gives a snow leopard-to-blue sheep ratio of 1:59 on a weight basis. The high preference of snow leopard to domestic livestock appears to be influenced by a much smaller available biomass of wild prey then in other regions of Nepal (e.g., 78kg/km2 in the KCA compared with a range of 200-300 kg/km2 in other regions of Nepal?. Along with livestock insurance scheme improvement, there needs to be a focus on improved livestock guarding, predator-proof corrals as well as engaging and educating local people to be citizen scientists on the importance of snow leopard conservation, involving them in long-term monitoring programs and promotion of ecotourism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1665  
Permanent link to this record
 

 
Author Shrestha, R.; Wegge, P. url 
  Title Habitat relationships between wild and domestic herbivores in Nepalese trans – Himalaya Type Journal Article
  Year 2008 Publication Journal of Arid Environments Abbreviated Journal  
  Volume 72 Issue Pages 914-925  
  Keywords blue sheep; Competition; domestic; habitat partitioning; naur; Nepal; pastoralism; pseudois nayaur; trans-himalaya  
  Abstract (down) In the semi-arid ecosystems of Asia, where pastoralism is a main subsistence occupation, grazing competition from domestic stock is believed to displace the wild ungulates. We studied the habitat relationships among sympatric naur and domestic yak and smallstock in Phu valley in upper Manang district, Nepal, on the basis of their distribution on vegetation types, elevation and slope. To control for the disturbance effect by humans, we collected the data on naur from those ranges where domestic stock were not being attended by herders. We applied correspondence analysis to explore habitat associations among animal groups (n ¬ 1415) within and across-seasons. Within each association, interspecific habitat overlaps and species habitat preferences were calculated. Naur was strongly associated with free-ranging yak as they used similar altitudinal ranges in all seasons, except in spring. Their distributions on vegetation types and slopes were also quite similar, except for a stronger preference for alpine meadows by naur during summer and winter. Naur and smallstock did not form temporal associations as the latter consistently used lower elevations. In autumn and spring, however, naur spatially overlapped with the summer range of smallstock, and both preferred the alpine meadow habitat during these periods. Alpine meadow was the least abundant vegetation type but was consistently and preferentially used by all animal groups across seasons. At high stocking densities, all three animals groups are therefore likely to compete for this vegetation type. The role of spatio-temporal heterogeneity for interpreting the interspecific relationships among ungulates in the semi-arid rangelands of the trans-Himalaya is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 937 Serial 891  
Permanent link to this record
 

 
Author Thapa, K., Rayamajhi, S. pdf 
  Title Anti-predator strategies of blue sheep (naur) under varied predator compositions: a comparison of snow leopard-inhabited valleys with and without wolves in Nepal Type Journal Article
  Year 2023 Publication Wildlife Research Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords Annapurna conservation area, antipredator behavior, blue sheep (Naur), predation, prey predator traits, snow leopard, trade-off, wolf.  
  Abstract (down) In Nepal, naur are usually the staple wild prey for the snow leopard, a solitary stalker hunter, and in some cases, for the wolf who hunts in a pack. We assumed that naur would adapt their anti-predatory responses to the presence of chasing and ambushing predators in the Manang Valley, where there are snow leopards and wolves, and in the Nar Phu valley, an area where there is only the snow leopard.

Aims. The aim of this study was to determine if there were differences in anti-predator strategies (vigilance, habitat selection and escape terrain) of naur in two valleys over two seasons, spring and autumn.

Methods. In spring 2019, we conducted a reconnaissance survey on the status of the naur and its habitat in the Manang and Nar Phu valleys of the Annapurna Conservation Area, Nepal. In spring and autumn 2020 and 2021, we observed 360 focal naur individuals (180 individuals in each valley), using the vigilance behaviour methodology to examine the behaviour of the naur.

Key results. There was little difference in the size of the naur groups between the Manang and Nar Phu valleys. The naur were twice as vigilant in Manang (15%), where there are snow leopards and wolves, as they were in Nar Phu (9%), with only snow leopards. The distance from the naur to escape cover was significantly shorter in Manang than in Nar Phu valley. Naur used significantly more rolling terrain in Nar Phu than in Manang. Conclusions. The return of wolves to the Manang valley may have resulted in an increase in the level of naur vigilance. Most likely, the wolves in Manang have already had an effect on the female-to-young-ratio, and this effect will possibly have important consequences for the naur population, as well as at the ecosystem level in the future. Other key determining factors, such as the climate crisis and changes in local resources, could have a significant impact on the naur population, indicating the need for more research. Implications. The findings of this study would provide valuable baseline information for the design of a science-based conservation strategy for conservation managers and scientists on naur, snow leopards and wolves.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rakhee @ Serial 1732  
Permanent link to this record
 

 
Author Mongolian Biosphere & Ecology Association url 
  Title Mongolian Biosphere & Ecology Association Report March 2010 Type Manuscript
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords nature; tourism; surveys; survey; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; attack; domestic; Animals; Animal; illegal; illegal hunting; hunting; territory; province; 2010; hunt; 1990; movements; movement; pasture; desert; number; species; birds; river; mountain; hunters; hunter; recent; government; structure; management; national; central; people; Report; gobi; Gobi Desert; reproduction; Adult; meat; food; ibex; wild; wild sheep; sheep; marmot; nutrition; schools; population; use; local; big; big game; big-game; game; 310; mountains; wolves; wolf; Seasons; times; zones; global; Mongolia; 40; history; ecology  
  Abstract (down) In accordance with order of the Ministry of Nature and Tourism,

zoologists of our association have made surveys in three ways such as

reasons why snow leopards attack domestic animals, “Snow leopard” trial

operation to count them and illegal hunting in territories of Khovd,

Gobi-Altai, Bayankhongor, Uvurkhangai and Umnugobi provinces from

September 2009 to January 2010. As result of these surveys it has made

the following conclusions in the followings: Reason to hunt them illegally: the principal reason is that

administrative units have been increased and territories of

administrative units have been diminished. There have been four

provinces in 1924 to 1926, 18 since 1965, 21 since 1990. Such situation

limits movements of herdsmen completely and pastures digressed much than

ever before. As result of such situation, 70% of pastures become desert.

Such digression caused not only heads of animals and also number of

species. Guarantee is that birds such as owls, cuckoo, willow grouse in

banks of Uyert river, Burkhanbuudai mountain, located in Biger soum,

Gobi-Altai province, which are not hunted by hunters, are disappearing

in the recent two decades. For that reason we consider it is urgently

necessary for the government to convert administrative unit structures

into four provinces. This would influence herdsmen moving across

hundreds km and pastures could depart from digression.

Second reason: cooperative movement won. The issues related to management and strengthening of national

cooperatives, considered by Central Committee of Mongolian People's

Revolutionary Party in the meeting in March 1953 was the start of

cooperatives' movement. Consideration by Yu. Tsedenbal, chairman of

Ministers Council, chairman of the MPRP, on report “Result of to unify

popular units and some important issues to maintain entity management of

agricultural cooperatives” in the fourth meeting by the Central

Committee of Mongolian People's Revolutionary Party /MPRP/ on December

16-17, 1959, proclaimed complete victory of cooperative. At the end of

1959, it could unify 767 small cooperative into 389 ones, unify 99.3 %

of herdsmen and socialize 73.3 % of animals. The remaining of animals

amount 6 million 163 thousands animals, and equals to 26.7% of total

animals. This concerned number of animals related to the article

mentioned that every family should have not more that 50 animals in

Khangai zone and not more 75 animals in Gobi desert. It shows that such

number could not satisfy needs of family if such number is divided into

five main animals in separating with reproduction animals and adult

animals. So herdsmen started hunt hoofed animals secretly and illegally

in order to satisfy their meat needs. Those animals included main food

of snow leopard such as ibex, wild sheep, and marmot. Third reason is that the state used to hunt ibex, which are main

nutrition of snow leopards, every year. The administrative unit of the

soum pursued policy to hunt ibex in order to provide meat needs of

secondary schools and hospitals. That's why this affected decrease of

ibex population. Preciously from 1986 to 1990 the permissions to hunt

one thousands of wild sheep and two thousands of ibexes were hunt for

domestic alimentary use every year. Not less than 10 local hunters of every soum used to take part in big

game of ibexes. Also they hunted many ibexes, chose 3-10 best ibexes and

hid them in the mountains for their consummation during hunting.

Fourth reason: hunting of wolves. Until 1990 the state used to give

prizes to hunter, who killed a wolf in any seasons of the year. Firstly

it offered a sheep for the wolf hunter and later it gave 25 tugrugs /15

USD/. Every year, wolf hunting was organized several times especially

picking wolf-cubs influenced spread and population of wolves. So snow

leopard came to the places where wolves survived before and attack

domestic animals. Such situation continued until 1990. Now population of

ibexes has decreased than before 1990 since the state stopped hunting

wolves, population of wolves increased in mountainous zones. We didn't

consider it had been right since it was natural event. However

population of ibexes decreased. Fifth reason: Global warming. In recent five years it has had a drought

and natural disaster from excessive snow in the places where it has

never had such natural disasters before. But Mongolia has 40 million

heads of domestic animals it has never increased like such quantity in

its history before. We consider it is not incorrect that decrease of

domestic animals could give opportunities to raise population of wild

animals. Our next survey is to make attempt to fix heads of snow leopards

correctly with low costs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 1100 Serial 705  
Permanent link to this record
 

 
Author The Snow Leopard Conservancy url 
  Title A Survey of Kathmandu-based Trekking Agencies: Market Opportunities for Linking Community-Based Ecotourism with the Conservation of Snow Leopard in the Annapurna Conservation Area. Report prepared for WWF-Nepal Programme Type Report
  Year 2002 Publication Abbreviated Journal  
  Volume SLC Field Series Document No. 4 Issue Pages 1-22  
  Keywords survey; trekking; linking; community-based; ecotourism; conservation; snow; snow leopard; snow-leopard; leopard; annapurna; annapurna conservation area; Annapurna-Conservation-Area; area; Report; trust; nature; nature conservation; Acap; Snow Leopard Conservancy; project; Manang; local; community; environment; Culture; population; number; blue; blue sheep; blue-sheep; sheep; endangered; cat; prey; Himalaya; snow leopards; snow-leopards; leopards; kill; livestock; killing; herders; herder; conflict; local people; people; wildlife; tourism; incentive; protect; predator; conserve; alpine; habitat  
  Abstract (down) In 2001 the King Mahendra Trust for Nature Conservation (KMTNC), Annapurna Conservation Area (ACAP), Snow Leopard Conservancy (SLC) and WWF-Nepal initiated a collaborative project aimed at enhancing ecotourism in the Manang area, in ways that strengthen benefits to local communities while also protecting the environment and the local culture. Manang is known for its relatively dense snow leopard population, along with supporting good numbers of blue sheep, the endangered cat's principal prey through much of the Himalaya. However, snow leopards periodically kill many livestock, leading to retributive killing by herders along with other associated people-wildlife conflict. In order to encourage the local people to better co-exist with snow leopards and other wildlife, SLC, WWF-Nepal and ACAP agreed to explore ways of providing tourism benefits to local communities as an incentive to protect this rare predator and conserve its alpine habitat. Key in this regard is the possibility of developing locally guided nature treks, and accordingly, this survey was conducted in order to assess existing market opportunities and constraints to such ecotourism enterprise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Los Gatos, California Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 1022 Serial 962  
Permanent link to this record
 

 
Author Oli, M. url 
  Title Snow leopards and blue sheep in Nepal: Densities and predator: Prey ratio Type Miscellaneous
  Year 1994 Publication Journal of Mammalogy Abbreviated Journal  
  Volume 75 Issue Pages 998-1004  
  Keywords snow leopard,Panthera uncia,blue sheep,Pseudois nayaur,density,predator:prey ratio,harvest rate,livestock predation,Nepal  
  Abstract (down) I studied snow leopards (Panthera uncia) and blue sheep (Pseudois nayaur) in Manang District, Annapurna Conservation Area, Nepal, to estimate numbers and analyze predatorprey interactions. Five to seven adult leopards used the 105-km2 study area, a density of 4.8 to 6.7 leopards/100 km2. Density of blue sheep was 6.6-10.2 sheep/km2, and biomass density was 304 kg/km2. Estimated relative biomass consumed by snow leopards suggested that blue sheep were the most important prey; marmots (Marmota himalayana) also contributed significantly to the diet of snow leopards. Snow leopards in Manang were estimated to harvest 9-20% of total biomass and 11-24% of total number of blue sheep annually. Snow leopard :blue sheep ratio was 1 :1 14-1 :159 on a weight basis, which was considered sustainable given the importance of small mammals in the leopard's diet and the absence of other competing predators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number SLN @ rana @ 894 Serial 741  
Permanent link to this record
 

 
Author Oli, M.K. url 
  Title Snow leopards and blue sheep in Nepal: Densities and predator: prey ratio Type Journal Article
  Year 1994 Publication Journal of Mammalogy Abbreviated Journal  
  Volume 75 Issue 4 Pages 998-1004  
  Keywords Nepal; blue-sheep; prey; livestock; predation; blue; sheep; browse; 740; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; blue sheep; densities; density; predator  
  Abstract (down) I studied snow leopards (Panthera uncia) and blue sheep (Pseudois nayaur) in Manang District, Annapurna Conservation Area, Nepal, to estimate numbers and analyze predator-prey interactions. Five to seven adult leopards used the 10-5-km-2 study area, a density of 4.8 to 6.7 leopards/100 km-2. Density of blue sheep was 6.6 10.2 sheep/km-2, and biomass density was 304 kg/km-2. Estimated relative biomass consumed by snow leopards suggested that blue sheep were the most important prey; marmots (Marmota himalayana) also contributed significantly to the diel of snow leopards Snow leopards in Manang were estimated to harvest 9-20% of total biomass and 11-24% of total number of blue sheep annually. Snow leopard: blue sheep ratio was 1:114-1:159 on a weight basis, which was considered sustainable given the importance of small mammals in the leopard's diet and the absence of other competing predators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Document Type: English Call Number: 599.05 JO Approved no  
  Call Number SLN @ rana @ 236 Serial 746  
Permanent link to this record
 

 
Author Jackson, R.M. url 
  Title Home Range, Movements and Habitat use of Snow Leopard (Uncia uncia) in Nepal Type Book Whole
  Year 1996 Publication Abbreviated Journal  
  Volume Issue Pages 233 pp  
  Keywords Nepal; blue-sheep; predator; prey; home-range; behavior; capture; telemetry; habitat; marking; activity; movement; tracking; blue; sheep; browse; home range; home; range; 990  
  Abstract (down) Home ranges for five radio-tagged snow leopards (Uncia uncia) inhabiting prime habitat in Nepal Himalaya varied in size from 11-37 km2. These solitary felids were crepuscular in activity, and although highly mobile, nearly 90% of all consecutive day movements involved a straight line distance of 2km or less. No seasonal difference in daily movement or home range boundry was detected. While home ranges overlapped substancially, use of common core spaces was temporally seperated, with tagged animals being located 1.9 km or more apart during the smae day. Spatial analysis indicated that 47-55% of use occured within only 6-15% of total home area. The snow leopards shared a common core use area, which was located at a major stream confuence in an area where topography, habitat and prey abundance appeared to be more favorable. A young female used her core area least, a female with two cubs to the greatest extent. the core area was marked significantly more with scrapes, Faeces and other sighn than non-core sites, suggesting that social marking plays an important role in spacing individuals. Snow leopards showed a strong preference for bedding in steep, rocky or broken terrain, on or close to a natural vegetation or landform edge. linear landform features, such as a cliff or major ridgeline, were preferred for travelling and day time resting. This behavior would tend to place a snow leopard close to its preferred prey, blue sheep (Psuedois nayaur), which uses the same habitat at night. Marking was concetrated along commonly travelled routes, particularly river bluffs, cliff ledges and well defined ridgelines bordering stream confluences--features that were most abundant within the core area. Such marking may facilitate mutual avoidance, help maintain the species' solitary social structure, and also enable a relatively high density of snow leopard, especially within high-quality habitat.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher University of London Place of Publication University of London Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Date of Copyright: 1996 Approved no  
  Call Number SLN @ rana @ 275 Serial 481  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: