|   | 
Details
   web
Records
Author Korablev, M. P., Poyarkov, A. D., Karnaukhov, A. S., Zvychaynaya, E. Y., Kuksin, A. N., Malykh, S. V., Istomov, S. V., Spitsyn, S. V., Aleksandrov, D. Y., Hernandez-Blanco, J. A., Munkhtsog, B., Munkhtogtokh, O., Putintsev, N. I., Vereshchagin, A. S., Becmurody, A., Afzunov, S., Rozhnov, V. V.
Title Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Type Journal Article
Year 2021 Publication Conservation Genetics Abbreviated Journal
Volume Issue Pages
Keywords Snow leopard, Panthera uncia, Microsatellites, Heterozygosity, Population structure, Noninvasive survey, Scat, Subspecies
Abstract (up) The snow leopard (Panthera uncia Schreber, 1776) population in Russia and Mongolia is situated at the northern edge of the range, where instability of ecological conditions and of prey availability may serve as prerequisites for demographic instability and, consequently, for reducing the genetic diversity. Moreover, this northern area of the species distribution is connected with the western and central parts by only a few small fragments of potential habitats in the Tian-Shan spurs in China and Kazakhstan. Given this structure of the range, the restriction of gene flow between the northern and other regions of snow leopard distribution can be expected. Under these conditions, data on population genetics would be extremely important for assessment of genetic diversity, population structure and gene flow both at regional and large-scale level. To investigate large-scale and fine-grain population structure and levels of genetic diversity we analyzed 108 snow leopards identified from noninvasively collected scat samples from Russia and Mongolia (the northern part of the range) as well as from Kyrgyzstan and Tajikistan (the western part of the range) using panel of eight polymorphic microsatellites. We found low to moderate levels of genetic diversity in the studied populations. Among local habitats, the highest heterozygosity and allelic richness were recorded in Kyrgyzstan (He = 0.66 ± 0.03, Ho = 0.70 ± 0.04, Ar = 3.17) whereas the lowest diversity was found in a periphery subpopulation in Buryatia Republic of Russia (He = 0.41 ± 0.12, Ho = 0.29 ± 0.05, Ar = 2.33). In general, snow leopards from the western range exhibit greater genetic diversity (He = 0.68 ± 0.04, Ho = 0.66 ± 0.03, Ar = 4.95) compared to those from the northern range (He = 0.60 ± 0.06, Ho = 0.49 ± 0.02, Ar = 4.45). In addition, we have identified signs of fragmentation in the northern habitat, which have led to significant genetic divergence between subpopulations in Russia. Multiple analyses of genetic structure support considerable genetic differentiation between the northern and western range parts, which may testify to subspecies subdivision of snow leopards from these regions. The observed patterns of genetic structure are evidence for delineation of several management units within the studied populations, requiring individual approaches for conservation initiatives, particularly related to translocation events. The causes for the revealed patterns of genetic structure and levels of genetic diversity are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1633
Permanent link to this record
 

 
Author Islam, M., Sahana, M., Areendran, G., Jamir, C., Raj, K., Sajjad, H.
Title Prediction of potential habitat suitability of snow leopard (Panthera uncia) and blue sheep (Pseudois nayaur) and niche overlap in the parts of western Himalayan region Type Journal Article
Year 2023 Publication Geo: Geography and Environment Abbreviated Journal
Volume 10 Issue e00121 Pages 1-15
Keywords bioclimatic variables, habitat suitability, MaxEnt model, niche overlap, western Himalayan region
Abstract (up) The snow leopard (Panthera uncia) and blue sheep (Pseudois nayaur) are the inhabitants of remote areas at higher altitudes with extreme geographic and climatic conditions. The habitats of these least-studied species are crucial for sustaining the Himalayan ecosystem. We employed the Maximum Entropy (MaxEnt) species distribution model to predict the potential habitat suitability of snow leopards and blue sheep and extracted common overlapped niches. For this, we utilised presence location, bio-climatic and environmental variables, and correlation analysis was applied to reduce the negative impact of multicollinearity. A total of 134 presence locations of snow leopards and 64 for blue sheep were selected from the Global Biodiversity Information Facility (GBIF). The annual mean temperature (Bio1) was found to be the most useful and highly influential factor to predict the potential habitat suitability of snow leopards. Annual mean temperature, annual precipitation and isothermality were the major influencing factors for blue sheep habitat suitability. Highly influential bio-climatic, topographic and environmental variables were integrated to construct the model for predicting habitat suitability. The area under the curve (AUC) values for snow leopard (0.87) and blue sheep (0.82) showed that the models are under good representation. Of the total area investigated, 47% was suitable for the blue sheep and 38% for the snow leopards. Spatial habitat assessment revealed that nearly 11% area from the predicted suitable habitat class of both species was spatially matched (overlapped), 48.6% area was unsuitable under niche overlap and 40.5% area was spatially mismatched niche. The presence of snow leopards and blue sheep in some highly suitable areas was not observed, yet such areas have the potential to sustain these elusive species. The other geographical regions interested in exploring habitat suitability may find the methodological framework adopted in this study useful for formulating an effective conservation policy and management strategy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1719
Permanent link to this record
 

 
Author Karki, A., Panthi, S.
Title Factors affecting livestock depredation by snow leopards (Panthera uncia) in the Himalayan region of Nepal Type Journal Article
Year 2021 Publication PeerJ Abbreviated Journal
Volume 9 Issue e11575 Pages 1-14
Keywords Conflict,Habitat,Himalaya,Livestockdepredation,Modeling,Snowleopard,Wildlife management
Abstract (up) The snow leopard (Panthera uncia) found in central Asia is classified as vulnerable species by the International Union for Conservation of Nature (IUCN). Every year, large number of livestock are killed by snow leopards in Nepal, leading to economic loss to local communities and making human-snow leopard conflict a major threat to snow leopard conservation. We conducted formal and informal stakeholder’s interviews to gather information related to livestock depredation with the aim to map the attack sites by the snow leopard. These sites were further validated by district forest office staffs to assess sources of bias. Attack sites older than 3 years were removed from the survey. We found 109 attack sites and visited all the sites for geo location purpose (GPS points of all unique sites were taken). We maintained at least a 100 m distance between attack locations to ensure that each attack location was unique, which resulted in 86 unique locations. A total of 235 km2 was used to define livestock depredation risk zone during this study. Using Maximum Entropy (MaxEnt) modeling, we found that distance to livestock sheds, distance to paths, aspect, and distance to roads were major contributing factors to the snow leopard’s attacks. We identified 13.64 km2 as risk zone for livestock depredation from snow leopards in the study area. Furthermore, snow leopards preferred to attack livestock near livestock shelters, far from human paths and at moderate distance from motor roads. These identified attack zones should be managed both for snow leopard conservation and livestock protection in order to balance human livelihoods while protecting snow leopards and their habitats.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1640
Permanent link to this record
 

 
Author Xiao, C., Bai, D., Lambert, J. P., Li, Y., Cering, L., Gong, Z., Riordan, P., Shi, K.
Title How Snow Leopards Share the Same Landscape with Tibetan Agro-pastoral Communities in the Chinese Himalayas Type Journal Article
Year 2022 Publication Journal of Resources and Ecology Abbreviated Journal
Volume 13 Issue 3 Pages 483-500
Keywords habitat use; landscape ecology; occupancy model; Qomolangma; Panthera uncia
Abstract (up) The snow leopard (Panthera uncia) inhabits a human-altered alpine landscape and is often tolerated by residents in regions where the dominant religion is Tibetan Buddhism, including in Qomolangma NNR on the northern side of the Chinese Himalayas. Despite these positive attitudes, many decades of rapid economic development and population growth can cause increasing disturbance to the snow leopards, altering their habitat use patterns and ultimately impacting their conservation. We adopted a dynamic landscape ecology perspective and used multi-scale technique and occupancy model to better understand snow leopard habitat use and coexistence with humans in an 825 km2 communal landscape. We ranked eight hypothetical models containing potential natural and anthropogenic drivers of habitat use and compared them between summer and winter seasons within a year. HABITAT was the optimal model in winter, whereas ANTHROPOGENIC INFLUENCE was the top ranking in summer (AICcw≤2). Overall, model performance was better in the winter than in the summer, suggesting that perhaps some latent summer covariates were not measured. Among the individual variables, terrain ruggedness strongly affected snow leopard habitat use in the winter, but not in the summer. Univariate modeling suggested snow leopards prefer to use rugged land in winter with a broad scale (4000 m focal radius) but with a lesser scale in summer (30 m); Snow leopards preferred habitat with a slope of 22° at a scale of 1000 m throughout both seasons, which is possibly correlated with prey occurrence. Furthermore, all covariates mentioned above showed inextricable ties with human activities (presence of settlements and grazing intensity). Our findings show that multiple sources of anthropogenic activity have complex connections with snow leopard habitat use, even under low human density when anthropogenic activities are sparsely distributed across a vast landscape. This study is also valuable for habitat use research in the future, especially regarding covariate selection for finite sample sizes in inaccessible terrain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1688
Permanent link to this record
 

 
Author Changxi, X., Bai, D., Lambert, J. P., Li, Y., Cering, L., Gong, Z., Riordan, P., Shi, K.
Title How Snow Leopards Share the Same Landscape with Tibetan Agro-pastoral Communities in the Chinese Himalayas Type Journal Article
Year 2022 Publication Journal of Resources and Ecology Abbreviated Journal
Volume 13 Issue 3 Pages 483-500
Keywords habitat use; landscape ecology; occupancy model; Qomolangma; Panthera uncia
Abstract (up) The snow leopard (Panthera uncia) inhabits a human-altered alpine landscape and is often tolerated by residents in regions where the dominant religion is Tibetan Buddhism, including in Qomolangma NNR on the northern side of the Chinese Himalayas. Despite these positive attitudes, many decades of rapid economic development and population growth can cause increasing disturbance to the snow leopards, altering their habitat use patterns and ultimately impacting their conservation. We adopted a dynamic landscape ecology perspective and used multi-scale technique and occupancy model to better understand snow leopard habitat use and coexistence with humans in an 825 km2 communal landscape. We ranked eight hypothetical models containing potential natural and anthropogenic drivers of habitat use and compared them between summer and winter seasons within a year. HABITAT was the optimal model in winter, whereas ANTHROPOGENIC INFLUENCE was the top ranking in summer (AICcw≤2). Overall, model performance was better in the winter than in the summer, suggesting that perhaps some latent summer covariates were not measured. Among the individual variables, terrain ruggedness strongly affected snow leopard habitat use in the winter, but not in the summer. Univariate modeling suggested snow leopards prefer to use rugged land in winter with a broad scale (4000 m focal radius) but with a lesser scale in summer (30 m); Snow leopards preferred habitat with a slope of 22° at a scale of 1000 m throughout both seasons, which is possibly correlated with prey occurrence. Furthermore, all covariates mentioned above showed inextricable ties with human activities (presence of settlements and grazing intensity). Our findings show that multiple sources of anthropogenic activity have complex connections with snow leopard habitat use, even under low human density when anthropogenic activities are sparsely distributed across a vast landscape. This study is also valuable for habitat use research in the future, especially regarding covariate selection for finite sample sizes in inaccessible terrain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1698
Permanent link to this record
 

 
Author Rashid, W., Shi, J., Rahim, I. U., Qasim, M., Baloch, M. N., Bohnett, E., Yang, F., Khan, I., Ahmad, B.
Title Modelling Potential Distribution of Snow Leopards in Pamir, Northern Pakistan: Implications for Human–Snow Leopard Conflicts Type Journal Article
Year 2021 Publication Sustainability Abbreviated Journal
Volume 13 Issue 13229 Pages 1-15
Keywords habitat fragmentation; habitat suitability; land use/cover change; Panthera uncia; MaxEnt model
Abstract (up) The snow leopard (Panthera uncia) is a cryptic and rare big cat inhabiting Asia’s remote and harsh elevated areas. Its population has decreased across the globe for various reasons, includ
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1664
Permanent link to this record
 

 
Author Krofel, M., Groff, C., Oberosler, V., Augugliaro, C., Rovero, F.
Title Snow leopard (Panthera uncia) predation and consumption of an adult yak in the Mongolian Altai. Type Note
Year 2021 Publication Ethology Ecology & Evolution Abbreviated Journal EEE
Volume Issue Pages 1-8
Keywords
Abstract (up) The snow leopard (Panthera uncia) is an apex predator of mountainous ecosystems in Central Asia, characterised by relatively long feeding times and low kill rates (Johansson et al. 2015; Mallon et al. 2016). Predation is mainly focused on wild ungulates and the vast majority of animals killed by snow leopards are smaller than 100 kg (Lovari et al. 2013). Throughout most of their range, Siberian ibex (Capra sibirica), blue sheep (Pseudois nayaur), and argali (Ovis ammon) represent the most important prey (Hunter 2015). These species weigh up to 180 kg, which was suggested to be near the maximum limit of the prey size that snow leopard can handle (i.e. about 3 times its size) (e.g. Schaller 1977; Hunter 2015). Accordingly, researchers generally assume that prey like adult yaks (Bos grunniens) with an average body weight of 250 kg (Bagchi & Mishra 2006), are too large to be killed by snow leopards (e.g. Devkota et al. 2013; Chetri et al. 2017). In contrast, local livestock herders report that snow leopard can also kill larger prey, including adult yaks (e.g. Li et al. 2013; Suryawanshi et al. 2013), but confirmed records of snow leopard killing prey of this size appear to be lacking in the literature. We also have very limited knowledge about the consumption of snow leopard kills, and the scavengers, including conspecifics, that are using them (Fox & Chundawat 2016; Schaller 2016). Here we report on a predation event and the following consumption process of a snow leopard kill, a free-roaming adult female yak, which we studied in 2019 using snow tracking, direct observation and camera trapping in the Mongolian Altai.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1634
Permanent link to this record
 

 
Author Smith, H. F., Townsend, K. E. B., Adrian, B., Levy, S., Marsh, S., Hassur, R., Manfredi, K., Echols, M. S.
Title Functional Adaptations in the Forelimb of the Snow Leopard (Panthera uncia) Type Journal Article
Year 2021 Publication Integrative and Comparative Biology Abbreviated Journal
Volume 61 Issue 5 Pages 1852-1866
Keywords
Abstract (up) The snow leopard (Panthera uncia) is anatomically and physiologically adapted for life in the rocky terrain of alpine zones in Central and South Asia. Panthera uncia is scansorial, and typically hunts solitarily by using overhead ambush of prey, rather than the typical stalking pattern of other large pantherines. In this study, we conducted dissections, detailed documentation, and illustrated the forelimb anatomy of two adult P. uncia specimens (1M/1F). Qualitative and quantitative data revealed an intriguing combination of functional adaptations illustrating a balance between the diverse demands of head-first descent, pouncing, climbing across rocky terrain, restraint of large prey, rapid pursuit, and navigating deep snow. In many forelimb proportions, P. uncia is intermediate between the cursorial Acinonyx jubatus (cheetah) and the scansorial forest dwelling Panthera onca (jaguar). Enlarged scapular and pectoral musculature provide stability to the shoulder girdle during grappling with large prey, as well as support during jumping and climbing. A small, unarticulated bony clavicle may provide greater stability to the forelimb, while still allowing flexibility. In the brachium and antebrachium of P. uncia, there is a functional compromise between the powerful grip needed for grasping large prey and the stability necessary for rapid pursuit of prey over uneven, rocky terrain. A unique bifurcation in the tendon of m. biceps brachii may provide additional functional stability at the radiohumeral joint. Intrinsic muscles of the palmar manus are broad and fleshy, acting as an enlarged surface area to evenly distribute body weight while walking on soft snow. However, muscles that act to provide fine manual manipulation are reduced, as in other large prey specialists. Overall, P. uncia displays morphological adaptive parallels with scansorial, large prey spe- cializing pantherines, such as P. onca, while also showing adaptations for running.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1670
Permanent link to this record
 

 
Author Lewis, M., Songster, E.E.
Title Studying the snow leopard: reconceptualizing conservation across the China–India border Type Journal Article
Year 2016 Publication British Journal for the History of Science Abbreviated Journal BJHS
Volume Themes 1 Issue 1 Pages 169-198
Keywords
Abstract (up) The snow leopard is a highly charismatic megafauna that elicits admiration, concern and donations from individuals and NGOs in the West. In its home territories, however, it is a threat to local communities’ livestock and a potential source of income for its pelt and parts. Conservation and study are further challenged by its range; snow leopards traverse the borders separating China, India and ten other countries with long histories of tension with each other as well as internal political and economic struggles. This transnational animal provides an ideal case study for the consideration of transnational conservation science in the recent past.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1638
Permanent link to this record
 

 
Author Din, J. U., Bari, F., Ali, H., Rehman, E. U., Adli, D. S. H., Abdullah, N. A., Norma-Rashid, Y., Kabir, M., Hameed, S., Nawaz, D. A., Nawaz, M. A.
Title Drivers of snow leopard poaching and trade in Pakistan and implications for management Type Journal Article
Year 2022 Publication Nature Conservation Abbreviated Journal
Volume 46 Issue Pages 49-62
Keywords conflict, illegal trade, northern Pakistan, pelt, poaching; retaliatory killing
Abstract (up) The snow leopard is one of the highly valued species from high-altitude mountain ecosystems of Central and Southeast Asia, including Pakistan. This keystone species is facing a myriad of conventional and emerging threats, including poaching and trade, that are poorly documented in Pakistan. To understand the dynamics and drivers of the poaching and trading of snow leopards in Pakistan, we investigated the issue in depth through a multifaceted survey in the snow leopard range of the country. We recorded 101 snow leopard poaching incidences from 11 districts during 2005–2017. The reported poaching incidences varied spatially (‒x = 9 ± 2.6 [95% Cl: 3–15]) and temporally (‒x = 7.8 ± 1.09) and accounted for 2–4% annual population loss (n = 200–420) in a period of 13 years. Poaching and trade together constituted 89% of the total incidence reported and animals were mostly shot (66%), poisoned (12%), snared (12%) and captured (4%), respectively. Only a fraction (3%) of the incidences were reported to the relevant law enforcement agencies. Trade routes included large cities and neighbouring countries, even the Middle East and Europe. The average base and end prices for each item were 245 ± 36 USD and 1,736 ± 520 USD, respectively, while maximum monetary fines set as per the law were 275 USD. Our results establish the need for developing multi-stakeholder coordination mechanisms at regional, national and international levels and information sharing to curb this menace. Improving the existing laws and surveillance system, while taking the local communities onboard, will further help to this end.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1672
Permanent link to this record