|   | 
Details
   web
Records
Author Johansson, O., Agvaantseren, B., Jackson, R., Kachel, S., Kubanychbekov, Z., McCarthy, T., Mishra, C., Ostrowski, S., Kulenbekov, R., Rajabi, A. M., Subba, S.
Title Body measurements of free-ranging snow leopards across their range Type Journal Article
Year 2022 Publication Snow Leopard Reports Abbreviated Journal
Volume 1 Issue Pages 1-6
Keywords Body mass, body size, carnivore, morphology, Panthera uncia
Abstract (down) We provide body measurements of snow leopards collected from 55 individuals sampled in five of the major mountain ranges within the species distribution range; the Altai, Hindu Kush, Himalayas, Pamirs and Tien Shan mountains. Snow leopards appear to be similarly sized across their distribution range with mean body masses of 36 kg and 42 kg for adult females and adult males, respectively. In contrast to other large felids, we found little variation in body size and body mass between the sexes; adult males were on average 5% longer and 15% heavier than adult females.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1711
Permanent link to this record
 

 
Author Johansson, O., Alexander, J. S., Lkhagvajav, P., Mishra, C., Samelius, G.
Title Natal dispersal and exploratory forays through atypical habitat in the mountain-bound snow leopard Type Journal Article
Year 2024 Publication Ecology Abbreviated Journal
Volume 2024 Issue e4264 Pages 1-4
Keywords connectivity, Gobi Desert, landscape permeability, Mongolia, Panthera uncia, resistance, steppe
Abstract (down) Understanding how landscapes affect animal movements is key to effective conservation and management (Rudnick et al., 2012; Zeller et al., 2012). Movement defines animal home ranges, where animals generally access resources such as food and mates, and also their dispersal and exploratory forays. These movements are important for individual survival and fitness through genetic exchange within and between populations and for colonization of unoccupied habitats (Baguette et al., 2013; MacArthur & Wilson, 1967). Dispersal and exploratory movements typically occur when young animals leave their natal range and establish more permanent home ranges (Greenwood, 1980; Howard, 1960). In mammals, natal dispersal of males is usually more frequent and happens over greater distances compared with that of females (Clobert et al., 2001; Greenwood, 1980).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1742
Permanent link to this record
 

 
Author Alexander, J. S., Johansson, O., Xiao, L., Chetri, M., Lkhagvajav, P., Karumbaya, R., Wright, B., Modaqiq, W., Lovari, S.
Title Snow Leopard Network: 20 years of collaboration among practitioners Type Journal Article
Year 2023 Publication Oryx Abbreviated Journal
Volume 57 Issue 5 Pages 559-560
Keywords
Abstract (down) The Snow Leopard Network (snowleopardnetwork.org), a global group dedicated to snow leopard Panthera uncia conservation, is commemorating 2 decades of accomplishments since its inception in 2002. Initiated at the Snow Leopard Survival Summit in Seattle, USA, with 58 experts from 17 countries, the Network continues to grow and to play a pivotal role in safeguarding the snow leopard in High Asia. Current membership stands at 621 individuals and 31 organizations. As new challenges and opportunities arise, collaborative and innovative solutions are more crucial than ever.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1729
Permanent link to this record
 

 
Author Johansson, O., Nyam, E., Lkhagvajav, P., Alexander, J. A., Samelius, G.
Title Predation Patterns and Hunting Behaviour of Snow Leopards: Insights from an Ibex Hunt Type Journal Article
Year 2023 Publication Snow Leopard Reports Abbreviated Journal
Volume Issue Pages 6-9
Keywords ambush, Capra sibirica, kill site, mountain, Panthera uncia
Abstract (down) The hunting behaviours of the snow leopard (Panthera uncia) are poorly understood. In this note, we describe the successful hunt of an adult male ibex (Capra sibirica) by a known male snow leopard in Tost Mountains, Mongolia. The hunt started in a mountain slope close to three large boulders and progressed downhill for 115 m until it concluded at the bottom of a drainage. By comparing the habitat where the ibex was killed to the kill sites of 158 ibex and 17 argali (Ovis ammon) that were killed by GPS-collared snow leopards, we demonstrate that the majority (62%) of these kills occurred in drainages. We propose that in successful hunts, snow leopards commonly ambush from above, causing prey individuals to typically flee downhill. Thereby the prey maintain their momentum and it is not until they are slowed down upon reaching the bottom of the drainage that the snow leopards are able to subdue them.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1730
Permanent link to this record
 

 
Author Johansson, O., Mishra, C., Chapron, G., Samelius, G., Lkhagvajav, P., McCarthy, T., Low, M.
Title Seasonal variation in daily activity patterns of snow leopards and their prey Type Journal Article
Year 2022 Publication Nature Portfolio Abbreviated Journal
Volume 12 Issue 21681 Pages 1-11
Keywords
Abstract (down) The daily and seasonal activity patterns of snow leopards (Panthera uncia) are poorly understood, limiting our ecological understanding and hampering our ability to mitigate threats such as climate change and retaliatory killing in response to livestock predation. We fitted GPS-collars with activity loggers to snow leopards, Siberian ibex (Capra sibirica: their main prey), and domestic goats (Capra hircus: common livestock prey) in Mongolia between 2009 and 2020. Snow leopards were facultatively nocturnal with season-specific crepuscular activity peaks: seasonal activity shifted towards night- sunrise during summer, and day-sunset in winter. Snow leopard activity was in contrast to their prey, which were consistently diurnal. We interpret these results in relation to: (1) darkness as concealment for snow leopards when stalking in an open landscape (nocturnal activity), (2) low-intermediate light preferred for predatory ambush in steep rocky terrain (dawn and dusk activity), and (3) seasonal activity adjustments to facilitate thermoregulation in an extreme environment. These patterns suggest that to minimise human-wildlife conflict, livestock should be corralled at night and dawn in summer, and dusk in winter. It is likely that climate change will intensify seasonal effects on the snow leopard’s daily temporal niche for thermoregulation in the future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1710
Permanent link to this record
 

 
Author Johansson, O., Koehler, G., Rauset, G. R.< Samelius, G., Andren, H., Mishra, C., Lhagvarsuren, P., McCarthy, T., Low, M.
Title Sex specific seasonal variation in puma and snow leopard home range utilization Type Journal Article
Year 2018 Publication Ecosphere Abbreviated Journal
Volume 9 Issue 8 Pages 1-14
Keywords Cougar, female choice, LoCoH, mating tactics, Panthera Uncia, Puma concolor, spacing pattern, territoriality
Abstract (down) Territory size is often larger for males than for females in species without biparental care. For large solitary carnivores, this is explained by males encompassing a set of female territories to monopolize their reproduction during mating (area maximization). However, males are expected to behave more like females outside of breeding, with their area utilization being dependent on the range required to secure food resources (area minimization). To examine how male and female solitary carnivores adjust their spatial organization during the year as key resources (mates and prey) change, we radio&#8208;collared 17 pumas (Puma concolor; nine males and eight females) and 14 snow leopards (Panthera uncia; seven males and seven females) and estimated home range size and overlap on two temporal scales (annual vs. monthly). Contrary to expectation, we found no evidence that males monopolized females (the mean territory overlap between females and the focal male during the mating season was 0.28 and 0.64 in pumas and snow leopards, respectively). Although male&#65533;male overlap of annual home ranges was comparatively high (snow leopards [0.21] vs. pumas [0.11]), monthly home range overlaps were small (snow leopards [0.02] vs. pumas [0.08]) suggesting strong territoriality. In pumas, both males and females reduced their monthly home ranges in winter, and at the same time, prey distribution was clumped and mating activity increased. In snow leopards, females showed little variation in seasonal home range size, following the seasonal stability in their primary prey. However, male snow leopards reduced their monthly home range utilization in the mating season. In line with other studies, our results suggest that female seasonal home range variation is largely explained by changes in food resource distribution. However, contrary to expectations, male territories did not generally encompass those of females, and males reduced their home ranges during mating. Our results show that male and female territorial boundaries tend to intersect in these species, and hint at the operation of female choice and male mate guarding within these mating systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1471
Permanent link to this record
 

 
Author McCarthy, T.; Murray, K.; Sharma, K.; Johansson, O.
Title Preliminary results of a long-term study of snow leopards in South Gobi, Mongolia Type Journal Article
Year 2010 Publication Cat News Abbreviated Journal
Volume Autumn Issue 53 Pages 15-19
Keywords snow leopard, Mongolia, monitor, population, Panthera, Snow Leopard Trust, Snow Leopard Conservation Fund, South Gobi, ecology, radio collar, GPS-satellite collar, home range, camera trapping, fecal genetics, occupancy modeling
Abstract (down) Snow leopards Panthera uncia are under threat across their range and require urgent conservation actions based on sound science. However, their remote habitat and cryptic nature make them inherently difficult to study and past attempts have provided insufficient information upon which to base effective conservation. Further, there has been no statistically-reliable and cost-effective method available to monitor snow leopard populations, focus conservation effort on key populations, or assess conservation impacts. To address these multiple information needs, Panthera, Snow Leopard Trust, and Snow Leopard Conservation Fund, launched an ambitious long-term study in Mongolia’s South Gobi province in 2008. To date, 10 snow leo-pards have been fitted with GPS-satellite collars to provide information on basic snow leopard ecology. Using 2,443 locations we calculated MCP home ranges of 150 – 938 km2, with substantial overlap between individuals. Exploratory movements outside typical snow leopard habitat have been observed. Trials of camera trapping, fecal genetics, and occupancy modeling, have been completed. Each method ex-hibits promise, and limitations, as potential monitoring tools for this elusive species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rana @ Serial 1151
Permanent link to this record
 

 
Author Johansson, O., Ullman, K., Lkhagvajav, P., Wiseman, M., Malmsten, J., Leijon, M.
Title Detection and Genetic Characterization of Viruses Present in Free-Ranging Snow Leopards Using Next-Generation Sequencing Type Journal Article
Year 2020 Publication Frontiers in Veterinary Science Abbreviated Journal
Volume 7 Issue 645 Pages 1-9
Keywords snow leopard, free-ranging, virome, Mongolia, rectal swabs, next-generating sequencing, Panthera unica
Abstract (down) Snow leopards inhabit the cold, arid environments of the high

mountains of South and Central Asia. These living conditions likely

affect the abundance and composition of microbes with the capacity to

infect these animals. It is important to investigate the microbes that

snow leopards are exposed to detect infectious disease threats and

define a baseline for future changes that may impact the health of this

endangered felid. In this work, next-generation sequencing is used to

investigate the fecal (and in a few cases serum) virome of seven snow

leopards from the Tost Mountains of Mongolia. The viral species to which

the greatest number of sequences reads showed high similarity was

rotavirus. Excluding one animal with overall very few sequence reads,

four of six animals (67%) displayed evidence of rotavirus infection. A

serum sample of a male and a rectal swab of a female snow leopard

produced sequence reads identical or closely similar to felid

herpesvirus 1, providing the first evidence that this virus infects snow

leopards. In addition, the rectal swab from the same female also

displayed sequence reads most similar to feline papillomavirus 2, which

is the first evidence for this virus infecting snow leopards. The rectal

swabs from all animals also showed evidence for the presence of small

circular DNA viruses, predominantly Circular Rep-Encoding

Single-Stranded (CRESS) DNA viruses and in one case feline anellovirus.

Several of the viruses implicated in the present study could affect the

health of snow leopards. In animals which are under environmental

stress, for example, young dispersing individuals and lactating females,

health issues may be exacerbated by latent virus infections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1612
Permanent link to this record
 

 
Author Solari, K. A., Morgan, S., Poyarkov, A. D., Weckworth, B., Samelius, G., Sharma, K., Ostrowski, S., Ramakrishnan, U., Kubanychbekov, Z., Kachel, S., Johansson, O., Lkhagvajav, P., Hemmingmoore, H., Alexandrov, D. Y., Bayaraa, M., Grachev, A., Korablev, M. P., Hernandez-Blanco, J. A., Munkhtsog, B., Rosenbaum, B., Rozhnov, V. V., Rajabi, A. M., Noori, H., Armstrong, E. E., Petrov, D. A.
Title Extreme in Every Way: Exceedingly Low Genetic Diversity in Snow Leopards Due to Persistently Small Population Size Type Journal Article
Year 2023 Publication bioRxiv Abbreviated Journal
Volume Issue Pages 1-24
Keywords
Abstract (down) Snow leopards (Panthera uncia) serve as an umbrella species whose conservation benefits their high-elevation Asian habitat. Their numbers are believed to be in decline due to numerous Anthropogenic threats; however, their conservation is hindered by numerous knowledge gaps. They are the least studied genetically of all big cat species and little is known about their historic population size and range, current population trends, or connectivity across their range. Here, we use whole genome sequencing data for 41 snow leopards (37 newly sequenced) to assess population connectivity, historic population size, and current levels of genetic diversity. Among our samples, we find evidence of a primary genetic divide between the northern and southern part of the range around the Dzungarian Basin and a secondary divide south of Kyrgyzstan around the Taklamakan Desert. However, we find evidence of gene flow, suggesting that barriers between these groups are permeable. Perhaps most noteworthy, we find that snow leopards have the lowest genetic diversity of any big cat species, likely due to a persistently small population size throughout their evolutionary history. Without a large population size or ample standing genetic variation to help buffer them from any forthcoming Anthropogenic challenges, snow leopard persistence may be more tenuous than currently appreciated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1739
Permanent link to this record
 

 
Author Janjua,S., Peters, J. L., Weckworth, B., Abbas, F. I., Bahn, Volker, Johansson, O., Rooney, T.P.
Title Improving our conservation genetic toolkit: ddRAD-seq for SNPs in snow leopards Type Journal Article
Year 2019 Publication Conservation Genetic Resource Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Snow leopards (Panthera uncia) are an enigmatic, high-altitude species whose challenging habitat, low population densities

and patchy distribution have presented challenges for scientists studying its biology, population structure, and genetics.

Molecular scatology brings a new hope for conservation efforts by providing valuable insights about snow leopards, including

their distribution, population densities, connectivity, habitat use, and population structure for assigning conservation units.

However, traditional amplification of microsatellites from non-invasive sources of DNA are accompanied by significant

genotyping errors due to low DNA yield and poor quality. These errors can lead to incorrect inferences in the number of

individuals and estimates of genetic diversity. Next generation technologies have revolutionized the depth of information

we can get from a species' genome. Here we used double digest restriction-site associated DNA sequencing (ddRAD-seq),

a well-established technique for studying non-model organisms, to develop a reference sequence library for snow leopards

using blood samples from five Mongolian individuals. Our final data set reveals 4504 loci with a median size range of 221 bp.

We identified 697 SNPs and low nucleotide diversity (0.00032) within these loci. However, the probability that two random

individuals will share identical genotypes is about 10-168. We developed probes for DNA capture using this sequence library

which can now be used for genotyping individuals from scat samples. Genetic data from ddRAD-seq will be invaluable for

conducting population and landscape scale studies that can inform snow leopard conservation strategies.
Address Snow leopard · ddRAD-seq · Next generation sequencing · SNP discovery
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1483
Permanent link to this record