Sampling: Need and designs

Koustubh Sharma \& Justine Shanti Alexander

Distribution of object of interest

- Random

Distribution of object of interest

- Random

Uniform sampling

- Similar to random

Distribution of object of interest

- Uneven

Distribution of object of interest

- Uneven

Distribution of object of interest

- Uneven
$a=$ area of unit
$A=$ Total Area
$c=$ count
$N=$ Abundance
$D=$ Density

Distribution of object of interest

- Uneven

How good is my estimate?

Accurate and Precise

Inacurate but Precise

Accurate but Imprecise

Inaccurate and Imprecise

How do we report error?

- Variance
- Standard Deviation
- Coefficient of Variation

Standard deviation
Mean

- 95\% Confidence Interval

How to reduce Error

- Increase number of samples (n)
- Random (or uniform)
- Needs more resources
- Stratify
- Needs ecological information
- Model
- Needs a good understanding of covariates

Increase samples

- Variance
- Standard Deviation
- Coefficient of Variation
$\frac{\sum\left(x_{i}-\text { mean }\right)^{2}}{(n-1))}$
$\sqrt{\frac{\sum\left(x_{i}-\text { mean }\right)^{2}}{(n-1)}}$

Standard deviation
Mean

- 95\% Confidence Interval

Increase samples

Increase samples

Gets better than before!

Habitat

- Uneven distribution

Habitat

- Uneven distribution

Habitat

- Uneven distribution

$$
\begin{aligned}
& a=0.1 \mathrm{~km}^{2} \\
& A=10 \mathrm{~km}^{2} \\
& A 1=3.5 \mathrm{~km}^{2} \\
& A 2=6.5 \mathrm{~km}^{2} \\
& c=\text { count } \\
& N=\text { Abundance } \\
& D=\text { Density } \\
& D=c / a \\
& N=D . A
\end{aligned}
$$

Question!

- What if our stratification is wrong?

Question!

- What if stratification is wrong?

Question!

- What if stratification is wrong? ${ }^{\text {H }}$

Question!

What if habitat not explicit?

- Gradient of distance from a river

What if habitat not explicit?

What if habitat not explicit?

What if habitat not explicit?

Visualizing on a scatterplot

We model!

Modeled count!

Average D vs Modeled D

Modeled count (or density)

Predict the count!

Question!

- What if we only sample where animals are?

Question!

- What if we only sample where animals

Answer!

- We bias...

What if...

Unit	Count
A	4
B	4
C	3
D	3
E	2
F	5
G	3
H	2
I	3
J	4
Mean	3.3
StDev	0.95
CL	$2.7-3.9$

What if...

- Detection is imperfect!

Unit	Count	C1
A	4	2
B	4	3
C	3	1
D	3	3
E	2	2
F	5	4
G	3	2
H	2	2
I	3	2
J	4	4
Mean	3.3	2.5
StDev	0.95	0.97
CL	$2.7-3.9$	$1.9-3.1$

Negative Bias

- Unknown number of animals NOT seen
- An unknown proportion of total animals SEEN

$$
D=\frac{N}{A}=\frac{\hat{C}}{A}<\text { Area }
$$

Detection Probability (p)

- Unknown number of animals NOT seen
- An unknown proportion of total animals SEEN

$$
D=\frac{N}{A}=\frac{\hat{C}}{p A}{ }_{\text {Area }}^{\text {Count }}
$$

Detection Probability (p)

- Unknown number of animals NOT seen
- An unknown proportion of total animals SEEN

Design-based inference

- Fewer assumptions
- Easy to understand outputs
- Estimators obtained computationally through sample design using weights \& other auxiliary information
- Have 'good’ statistical properties

Model based

- Useful in case of non-sampling errors or discontinuities in survey design
- Valuable in understanding patterns
- Need ecological information about covariates
- Wrong selection of covariates may lead to spurious inference

