Sampling: Need and designs

Koustubh Sharma & Justine Shanti Alexander
Quantitative ecology

- All about quantifying
 - Populations
 - Habitat
 - Behaviour
 - Environment
Some useful parameters

- Abundance (N)
Some useful parameters

- Density

\[D = \frac{N}{A} \]

Abundance

\[D \cdot A = N \]
How to quantify?

• Estimate everything
How to quantify…

• Estimate everything?

😊
How to quantify...

- Estimate still?????

😊😊😊
How to quantify…

• Do sampling!!!

😊
Where to sample?

• Define questions
 – What is to be quantified (Parameter)

• And then…
 – How should it be quantified (sampling protocol/method)
 – When should it be quantified
 – Where should it be quantified (defining samples)
Distribution of object of interest

- Systematic

\[D = c/a \]
\[N = D \cdot A \]

- **Definitions**
 - \(a = \text{area of unit} \)
 - \(c = \text{count} \)
 - \(D = \text{Density} \)
 - \(A = \text{Total Area} \)
 - \(N = \text{Abundance} \)
Distribution of object of interest

- Systematic

Count = 12 points
Area of unit = 0.4 km2
Total area = 10 km2

$a = \text{area of unit}$
$c = \text{count}$
$D = \text{Density}$
$A = \text{Total Area}$
$N = \text{Abundance}$

$D = \frac{c}{a}$
$N = D \cdot A$

$D = ___?$
$N = ___?$

Count = 12 points
Area of unit = 0.4 km2
Total area = 10 km2
Distribution of object of interest

- Systematic

\[D = \frac{c}{a} \]
\[N = D \cdot A \]

\[D = 30 \]
\[N = 300 \]

Count = 12 points
Area of unit = 0.4 km\(^2\)
Total area = 10 km\(^2\)

\[a = \text{area of unit} \]
\[A = \text{Total Area} \]
\[c = \text{count} \]
\[N = \text{Abundance} \]
\[D = \text{Density} \]
Distribution of object of interest

- Systematic

\[D = \frac{c}{a} \]
\[N = D \times A \]

\(D = 30 \)
\(N = 300 \)

Count = 12 points
Area of unit = 0.4 km\(^2\)
Total area = 10 km\(^2\)

\(a = \text{area of unit} \)
\(A = \text{Total Area} \)
\(c = \text{count} \)
\(N = \text{Abundance} \)
\(D = \text{Density} \)
Distribution of object of interest

- Random

\(D = c/a \)

\(N = D \cdot A \)

\(a = \text{area of unit} \)

\(A = \text{Total Area} \)

\(c = \text{count} \)

\(N = \text{Abundance} \)

\(D = \text{Density} \)

Count = ?

Area of unit = 0.1 km\(^2\)

Total area = 10 km\(^2\)
Distribution of object of interest

- Random

\[D = \frac{c}{a} \]
\[N = D \cdot A \]

\(a = \text{area of unit} \)
\(A = \text{Total Area} \)
\(c = \text{count} \)
\(N = \text{Abundance} \)
\(D = \text{Density} \)

\(D = \, ? \)
\(N = \, ? \)

Count = ?
Area of unit = 0.1 km²
Total area = 10 km²
Distribution of object of interest

- Random

<table>
<thead>
<tr>
<th>Unit</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Count</th>
<th>3.5</th>
</tr>
</thead>
</table>

Mean (\bar{x}) = $\frac{\sum x}{n}$

Area of unit = 0.1 km2
Total area = 10 km2

$a = \text{area of unit}$

$A = \text{Total Area}$

$c = \text{count}$

$N = \text{Abundance}$

$D = \text{Density}$

$D = c/a$

$N = D \cdot A$

$D =$ ___?

$N =$ ___?
Distribution of object of interest

- Random

<table>
<thead>
<tr>
<th>Unit</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
</tr>
<tr>
<td>Mean</td>
<td>3.5</td>
</tr>
</tbody>
</table>

\[D = \frac{c}{a} \]
\[N = D \cdot A \]
\[D = 35 \]
\[N = 350 \]

Area of unit = 0.1 km²
Total area = 10 km²

\[a = \text{area of unit} \]
\[A = \text{Total Area} \]
\[c = \text{count} \]
\[N = \text{Abundance} \]
\[D = \text{Density} \]
Distribution of object of interest

• Random

\[D = \frac{c}{a} \]
\[N = D \cdot A \]
\[D = 35 \pm x \]
\[N = 350 \pm x \]

\(a = \text{area of unit} \)
\(A = \text{Total Area} \)
\(c = \text{count} \)
\(N = \text{Abundance} \)
\(D = \text{Density} \)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
</tr>
</tbody>
</table>

Mean	3.5
StDev	1.04
95% CI	2.7-4.3
Time for lego