Sampling: Need and designs

Koustubh Sharma \& Justine Shanti Alexander

Quantitative ecology

- All about quantifying
- Populations
- Habitat
- Behaviour
- Environment

Some useful parameters

- Abundance (N)

Some useful parameters

- Density

How to quantify ?

- Estimate everything

How to quantify...

- Estimate everything?
©

How to quantify...

Estimate still????

为

How to quantify...

- Do sampling!!!
\because

Where to sample?

- Define questions
- What is to be quantified (Parameter)
- And then...
- How should it be quantified (sampling protocol/method)
- When should it be quantified
- Where should it be quantified (defining samples)

Distribution of object of interest

Distribution of object of interest

- Random

Distribution of object of interest

- Random

$$
\begin{aligned}
& a=\text { area of unit } \\
& A=\text { Total Area } \\
& c=\text { count } \\
& N=\text { Abundance } \\
& D=\text { Density }
\end{aligned}
$$

Distribution of object of interest

- Random
$a=$ area of unit
$A=$ Total Area
$c=$ count
$N=$ Abundance
$D=$ Density

$$
\begin{aligned}
& \\
& D=c / a \\
& N=D . A
\end{aligned}
$$

$$
\begin{aligned}
& D=_? \\
& N=_?
\end{aligned}
$$

Unit	Count
A	4
B	4
C	3
D	3
E	2
F	5
Mean Count	3.5

Mean $(\bar{x})=\frac{\sum x}{n}$
Area of unit $=0.1 \mathrm{~km}^{2}$
Total area $=10 \mathrm{~km}^{2}$

Distribution of object of interest

- Random
$a=$ area of unit
$A=$ Total Area
$c=$ count
$N=$ Abundance
$D=$ Density

Area of unit $=0.1 \mathrm{~km}^{2}$
Total area $=10 \mathrm{~km}^{2}$

Distribution of object of interest

- Random
$a=$ area of unit
$A=$ Total Area
$c=$ count
$N=$ Abundance
$D=$ Density

Time for lego

