Home | << 1 2 >> |
![]() |
Williams, N. (2008). 2008 International Conference on Range-wide Conservation Planning for Snow Leopards: Saving the Species Across its Range. Cat News, 48, 33–34.
Abstract: Over 100 snow leopard experts, enthusiasts, and government officials gathered in the outskirts of Beijing, China from March 7–11, 2008 for the firstever International Conference on Range-wide Conservation Planning for Snow Leopards. Conference organizers included Panthera, Wildlife Conservation Society (WCS), Snow Leopard Trust (SLT), Snow Leopard Network (SLN), and the Chinese Institute of Zoology.
|
Ming, M. (2008). A diary of infrared photography. Man & the Biosphere, 54(6), 26–35.
Abstract: The vivid and interesting stories recorded by the diary which is written by the professor Ma Ming tell us specific details of surveying Snow Leopard in the Tianshan Mountains. The members of the team overcame all kinds of difficulties and dangers with persistent enthusiasm for this work, finally, satisfactorily finishing the field survey. Recently, Ma Ming just has accomplished the preliminary investigation of snow leopards in Kunlun Mountains. If you want to share the experience of the surveying, please read this diary (http://maming3211.blog.163.com).
http://space.tv.cctv.com/act/video.jsp?videoId=VIDE1230446448556286 http://maming3211.blog.163.com/blog/static/109271612008112681931339/ Keywords: photography; us; snow; snow leopard; snow-leopard; leopard; Tianshan Mountains; mountains; mountain; work; field; field survey; field-survey; survey; snow leopards; snow-leopards; leopards; Kunlun; Chinese
|
McCarthy, T., Breitenmoser, U., & Breitenmoser-Wursten, C. (2008). A king of snow peaks, another endangered flagship species. Man & the Biosphere, 54(6), 1.
Abstract: The preface of this journal mainly introduces the distribution areas and present living situation of the Snow Leopards. For saving the endangered and solitary mountain species, The Snow Leopard Trust is a leader in effort to secure the future of the felines, besides the authors emphasize that China plays great important role in the protection, because among the snow leopards range countries, China has the most habit and is believed to harbor the largest number of snow leopard.
Keywords: Chinese; endangered; flagship-species; snow leopard; species
|
Singh, N. J. (2008). Animal – Habitat relationships in high altitude rangelands. Norway: University of Tromsø.
Abstract: This study conducted in the high altitude rangelands of Indian Transhimalaya, deals with basic questions regarding the ecology of an endangered species, the wildsheep Tibetan argali (Ovis ammon hodgsoni) and applied issues related to its conservation and potential conflict with the local nomadic pastoralists. The basic questions on ecology are aimed at delineating the habitat and resource selection processes, identifying factors causing sexual segregation and efficient surveying and sampling. The applied aspect focuses on the changing face of pastoralism and the potential impacts of modernising livestock husbandry on argali.
Overall, the study provides a general framework towards the understanding of argali-habitat relationships at different spatio-temporal scales. The spatial determinant associated with altitude in the area, predicts argali habitat and resource selection in this relatively homogenous landscape. These determine the range of other topographic variables and forage characteristics selected by argali. The selection of feeding patches in the selected range of altitude and topography is mainly characterised by their greenness and the quality of plant groups. Adjusting to changing forage quality, argali display an opportunistic feeding strategy, selecting grasses in early spring and switching to forbs later in summer. Nevertheless, the habitat selection process did not appear to differ among the sexes to drive sexual segregation. There was, however, strong segregation among the sexes as well as between lactating and non lactating females. The reasons for segregation appeared to be predominantly social, but driven ultimately by predation and concomitantly by resources. The habitat selection information was used to design a stratified random sampling strategy that led to i) a significant reduction in survey effort in sampling these sparsely distributed species and ii) reduction in sampling bias. The applied aspect of the study outlines and evaluates the dramatic changes in the nomadic pastoralism that have occurred in the past five decades in the study area. These have led to a loss of pastures (-25 to -33%) of the nomads, consequent readjustment in traditional patterns of pasture use, intensified grazing pressures (25 to 70%) and rangeland degradation in the area. Such changes may have serious consequences on the survival of local wildlife, as tested with a study of the effects on argali of livestock presence and resource exploitation. Hence, a successful conservation and recovery strategy should focus on: minimising the impacts of livestock on argali, identifying the factors affecting the persistence of the current populations, increasing local sub populations of this species to prevent extinction due to stochastic events, prevent loss of genetic diversity and excessive fragmentation and thus ensuring gene flow. Ecological Niche Factor Analyses (ENFA), bias-reduced logistic regression and Fuzzy correspondence analyses (FCA) were used to answer habitat and resource selection questions. A sexual segregation and aggregation statistic (SSAS) was used to estimate the components of sexual segregation and test segregation. SSAS combined with canonical correspondence analyses (CCA) allowed the estimation of segregation based on habitat variables. Logistic regression models were formulated to estimate models on which the stratified random sampling strategy was based. The 9 Animal – Habitat relationships in high altitude rangelands overall study also included surveys, interviews and literature reviews to understand the nomads’ movement and pasture use patterns of their livestock. Kernel density estimations (KDE) were used to estimate extent of range overlaps between livestock and argali. |
McCarthy, K., Fuller, T., Ming, M., McCarthy, T., Waits, L., & Jumabaev, K. (2008). Assessing Estimators of Snow Leopard Abundance (Vol. 72).
Abstract: The secretive nature of snow leopards (Uncia uncia) makes them difficult to monitor, yet conservation efforts require accurate and precise methods to estimate abundance. We assessed accuracy of Snow Leopard Information Management System (SLIMS) sign surveys by comparing them with 4 methods for estimating snow leopard abundance: predator:prey biomass ratios, capture-recapture density estimation, photo-capture rate, and individual identification through genetic analysis. We recorded snow leopard sign during standardized surveys in the SaryChat Zapovednik, the Jangart hunting reserve, and the Tomur Strictly Protected Area, in the Tien Shan Mountains of Kyrgyzstan and China. During June-December 2005, adjusted sign averaged 46.3 (SaryChat), 94.6 (Jangart), and 150.8 (Tomur) occurrences/km. We used
counts of ibex (Capra ibex) and argali (Ovis ammon) to estimate available prey biomass and subsequent potential snow leopard densities of 8.7 (SaryChat), 1.0 (Jangart), and 1.1 (Tomur) snow leopards/100 km2. Photo capture-recapture density estimates were 0.15 (n = 1 identified individual/1 photo), 0.87 (n = 4/13), and 0.74 (n = 5/6) individuals/100 km2 in SaryChat, Jangart, and Tomur, respectively. Photo-capture rates (photos/100 trap-nights) were 0.09 (SaryChat), 0.93 (Jangart), and 2.37 (Tomur). Genetic analysis of snow leopard fecal samples provided minimum population sizes of 3 (SaryChat), 5 (Jangart), and 9 (Tomur) snow leopards. These results suggest SLIMS sign surveys may be affected by observer bias and environmental variance. However, when such bias and variation are accounted for, sign surveys indicate relative abundances similar to photo rates and genetic individual identification results. Density or abundance estimates based on capture-recapture or ungulate biomass did not agree with other indices of abundance. Confidence in estimated densities, or even detection of significant changes in abundance of snow leopard, will require more effort and better documentation. |
ud Din, J. (2008). Assessing the Status of Snow Leopard in Torkhow Valley, District Chitral, Pakistan: Final Technical Report.
Abstract: This study was aimed at assessing the status of Snow leopard, its major prey base, and the extent of human-Snow leopard conflict and major threats to the wildlife in north Chitral (Torkhow valley) Pakistan. Snow leopard occurrence was conformed through sign transect surveys i.e. SLIMS. Based on the data collected the number of Snow leopards in this survey block (1022 Kmý) is estimated to be 2-3 animals. Comparing this estimate with the available data from other parts of the district the population of snow leopard in Chitral district was count to be 36 animals. Livestock depredation reports collected from the area reflect the existence of human-snow leopard conflict and 138 cases were recorded affecting 102 families (in a period of eight years, 2001-2008). Ungulates (Himalayan Ibex) rut season surveys were conducted in coordination with NWFP Wildlife department. A total of 429 animals were counted using direct count (point method) surveys. Other snow leopard prey species recorded include marmot, hare, and game birds. Signs of other carnivores i.e. wolf, jackal, and fox were also noticed. Major threats to the survival of wildlife especially snow leopard reckoned include retaliatory killing (Shooting, Poisoning), poaching, loss of natural prey, habitat degradation (over grazing, fodder and fuel wood collection), lack of awareness, and over population. GIS map of the study area was developed highlighting the area searched for Snow leopard and its prey species. Capacity of the Wildlife Department staff was built in conducting SLIMS and ungulate surveys through class room and on field training. Awareness regarding the importance of wildlife conservation was highlighted to the students, teachers and general community through lectures and distribution of resource materials developed by WWF-Pakistan.
Keywords: status; snow; snow leopard; snow-leopard; leopard; valley; chitral; Pakistan; Report; study; prey; Base; conflict; threats; threat; wildlife; sign; transect; surveys; survey; Slims; Data; number; snow leopards; snow-leopards; leopards; Animals; Animal; population; livestock; livestock depredation; livestock-depredation; depredation; area; Case; ungulates; ungulate; Himalayan; himalayan ibex; ibex; rut; using; prey species; prey-species; species; marmot; game; birds; carnivores; carnivore; wolf; wolves; jackal; fox; survival; retaliatory; retaliatory killing; retaliatory-killing; killing; poisoning; poaching; loss; habitat; habitat degradation; habitat-degradation; degradation; grazing; collection; awareness; Gis; map; staff; field; training; conservation; community; distribution; resource; project; network; program
|
WWF Mongolia. (2008). Brief report of the trainning on wool organized in centre of Uvs aimag. Mongolia: Author.
Abstract: In training held on 21-28 December of 2007 were attended 5 people in total: 2 members of Uureg community and 3 members of Argalt-kharig community of Sagil soum.
The training on processing wool and producing felt organized everyday between 08.15 and 22.00 and started in time as it was planned. During the training the members of two communities actively participated and did class work well. |
Ming, M., Yun, G., & Bo, W. (2008). Chinese snow leopard team goes into action. Man & the Biosphere, 54(6), 18–25.
Abstract: China, the world's most populous country, also contains the largest number of Snow Leopards of any country in the world. But the survey and research of the snow leopard had been very little for the second half of the 20th century. Until recent years, the members of Xinjiang Snow Leopards Group (XSLG/SLT/XFC) , the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences have been tracking down the solitary animal. The journal reporter does a face-to-face interview with professor Ma Ming who is a main responsible expert of the survey team. By the account of such conversation, we learn the achievements, advances and difficulty of research of snow leopards in the field, Tianshan and Kunlun, Xinjiang, the far west China, and we also know that why the team adopt the infrared camera to capture the animals. Last but not least professor talked about the survival menace faced by the Snow Leopards in Xinjiang.
|
Dawa, T., Farrington, J. (2008). Conflict between nomadic herders and brown bears in the Byang thang Region of Tibet. Journal of the International Association of Tibetan Studies, 4(December), 1–42.
Abstract: Article covers the human-brown bear conflict problem, which closely parallels that of snow leopard conflict in the TAR, the peer reviewed version of: Tsering, Dawa, John D. Farrington, and Kelsang Norbu. Competition and Coexistence: Human-Wildlife Conflict in the Chang Tang Region of Tibet. Lhasa, Tibet Autonomous Region, China: Tibet People’s Publishing House, 2007.
In order to evaluate the impact of recently introduced wildlife conservation policies, a human-wildlife conflict survey of three-hundred herding households was conducted in the south-central Byang thang (Qiangtang) area of the Tibet Autonomous Region (bod rang skyongs ljongs, Xizang Zizhi Qu). Results showed that Tibetan brown bears were the largest source of human-wildlife conflict in the survey area, affecting 49 percent of surveyed households between 1990 and 2006, with a 4.5-fold increase in conflict with bears occurring since implementation of various wildlife protection policies beginning in 1993. Types of bear conflict included livestock kills, raiding of human food supplies, damage to dwellings and furnishings, and direct attacks on herders. Brown bears have caused devastating economic losses to herders and anecdotal evidence indicates that retaliatory killing of bears by herders now poses the greatest threat to the Tibetan brown bear. Immediate measures must be taken to resolve this conflict if humans and brown bears are to coexist in the Byang thang region. |
Jack, R. (2008). DNA Testing and GPS positioning of snow leopard (Panthera uncia) genetic material in the Khunjerab National Park Northern Areas, Pakistan.
Abstract: The protection of Snow Leopards in the remote and economically disadvantaged Northern Areas of Pakistan needs local people equipped with the skills to gather and present information on the number and range of individual animals in their area. It is important for the success of a conservation campaign that the people living in the area are engaged in the conservation process. Snow Leopards are elusive and range through inhospitable terrain so direct study is difficult. Consequently the major goals for this project were twofold, to gather information on snow leopard distribution in this area and to train local university students and conservation management professionals in the techniques used for locating snow leopards without the need to capture or even see the animals. This project pioneered the use of DNA testing of field samples collected in Pakistan to determine the distribution of snow leopards and to attempt to identify individuals. These were collected in and around that country's most northerly national park, the Kunjurab National Park, which sits on the Pakistan China border. Though the Northern Areas is not a well developed part of Pakistan, it does possess a number of institutions that can work together to strengthen snow leopard conservation. The first of these is a newly established University with students ready to be trained in the skills needed. Secondly WWF-Pakistan has an office in the main town and a state of the art GIS laboratory in Lahore and already works closely with the Forest Department who manage the national park. All three institutions worked together in this project with WWF providing GIS expertise, the FD rangers, and the university students carrying out the laboratory work. In addition in the course of the project the University of the Punjab in Lahore also joined the effort, providing laboratory facilities for the students. As a result of this project maps have been produced showing the location of snow leopards in
two areas. Preliminary DNA evidence indicates that there is more than one animal in this relatively small area, but the greatest achievement of this project is the training and experience gained by the local students. For one student this has been life changing. Due to the opportunities provided by this study the student, Nelofar gained significant scientific training and as a consequence she is now working as a lecturer and research officer for the Center for Integrated Mountain Research, New Campus University of the Punjab, Lahore Pakistan Keywords: project; snow; snow leopard; snow-leopard; leopard; network; conservation; program; Dna; Gps; panthera; panthera uncia; Panthera-uncia; uncia; Khunjerab; Khunjerab-National-Park; national; national park; National-park; park; areas; area; Pakistan; protection; snow leopards; snow-leopards; leopards; local; local people; people; information; number; range; Animals; Animal; study; distribution; management; professional; techniques; capture; use; field; country; China; border; work; art; Gis; Forest; manage; Wwf; maps; map; location; training; research; mountain
|
Sulser, C. E., Steck, B. L., & Baur, B. (2008). Effects of construction noise on behaviour of and exhibit use by Snow leopards Uncia uncia at Basel zoo (Vol. 42).
Abstract: Noise caused by human activities can cause stress in animals. We examined whether noise from construction sites affects the behaviour of and exhibit use by three Snow leopards Uncia uncia at Basel zoo. The behaviour and location of the animals were recorded at 1 minute intervals, using the instantaneous scan sampling method over a period of 216 hours (104 hours on noisy days and 112 hours on quiet days). The animals differed individually in their responses to the construction noise. On noisy days, the Snow leopards generally spent less time in locomotion and more time resting, but even on quiet days, resting was the predominant behaviour performed. Under noisy conditions, they increased social resting and decreased resting alone. Walking and social walking were also reduced on noisy days. Furthermore, the Snow leopards spent considerably more time in the remote offexhibit enclosure under noisy conditions. Independent of background noise, they stayed more than half of the time in the caves and the forecourts of the outdoor enclosure. On quiet days, the Snow leopards used more sectors of their exhibit than on noisy days. The results indicate that the Snow leopards responded to construction noise by increasing the amount of time spent resting and by withdrawing to the remote parts of their exhibit.
Keywords: behaviour; captive; construction noise; exhibit use; snow leopard; Uncia uncia; zoo
|
Tytar, V., & Hammer, M. (2008). Expedition report: Mountain ghosts: snow leopards and other animals in the mountains of the Altai Republic, Central Asia. Biosphere Expeditions.
Abstract: This study was part of an expedition to the Altai mountains in the Kosh Agach region of the Altai Republic, run by Biosphere Expeditions from 8 July to 17 August 2007. The aim was to continue a survey of snow leopard (Uncia uncia) in this area, as well as surveying the snow leopard's primary prey species, argali (Ovis ammon) and Siberian ibex (Capra sibirica), together with secondary prey species.
Using the Snow Leopard Information Management System (SLIMS) developed by the International Snow Leopard Trust (ISLT), presence/absence surveys (SLIMS form 1) of snow leopard and prey species were conducted throughout the study period across the entire survey area (approximately 200 square kilometers). In 2007 surveys were extended to areas away from the Tapduair massif site to the valley and surrounding ridges of Irbistu mountain. Interviews with local, semi-nomadic herders also formed an important part of the research procedure. The expedition also collected data for extended mammal, bird and plant inventories. The decrease in numbers of the primary prey species observed recently makes it very likely that food availability is not in favour of the snow leopard in the study area. This is supported by the fact that in 2006 there were no records of snow leopard sign in the core area and in 2007 only a few were found. Nevertheless, the study area retains its importance as a habitat for snow leopard and as a corridor for snow leopard dispersal. Unfortunately, privatisation of formerly common land is on the increase as is a lack of respect traditional land management practices, so the survey area urgently needs protection, but involving the local community and raising public awareness is vital if conservation initiatives are to succeed. Keywords: Altai
|
Burgener, N., Gusset, M., & Schmid, H. (2008). Frustrated appetitive foraging behavior, stereotypic pacing, and fecal glucocorticoid levels in snow leopards (Uncia uncia) in the Zurich Zoo (Vol. 11).
Abstract: This study hypothesized that permanently frustrated, appetitive-foraging behavior caused the stereotypic pacing regularly observed in captive carnivores. Using 2 adult female snow leopards (Uncia uncia), solitarily housed in the Zurich Zoo, the study tested this hypothesis experimentally with a novel feeding method: electronically controlled, time-regulated feeding boxes. The expected result of employing this active foraging device as a successful coping strategy was reduced behavioral and physiological measures of stress, compared with a control-feeding regime without feeding boxes. The study assessed this through behavioral observations and by evaluating glucocorticoid levels noninvasively from feces. Results indicated that the 2 snow leopards did not perform successful coping behavior through exercising active foraging behavior or through displaying the stereotypic pacing. The data support a possible explanation: The box-feeding method did not provide the 2 snow leopards with the external stimuli to satisfy their appetitive behavioral needs. Moreover, numerous other factors not necessarily or exclusively related to appetitive behavior could have caused and influenced the stereotypic pacing.
Keywords: behavior; captive; fecal; feeding strategy; physiological; snow leopard; zoo
|
Manati, A. R. (2008). Fur trade of large cats and the question of the subspecies status of leopards in Afghanistan (Der Handel mit Fellen von Grosskatzen und die Abklärung der Unterartenfrage beim. Germany: University of Köln.
Abstract: Over a time of four years the bazars of Afghanistan were surveyed for furs of spotted wild cats, in particular leopards and snow leopards. In 2004 in Kabul a total of 28 furs of leopards were purchased by shopkeepers and 21 sold at an average price of 825 $. In the same year 25 furs of snow leopards were purchased and 19 sold to clients at an average price of 583 $. In 2006 at a single inspection double as many furs of leopards were found to be offered for sale in comparison to the whole year of 2004. Also prices had increased over the two years by 20 % to an average of 1037 $. Similarly the number of furs of snow leopards at 21 pieces was higher than in 2004, and the prices had increased to an average of 652 $. In 2007 investigations rendered more difficult, because the authorities had started to control the fur trade, and the results are not unequivocal. Clients were without any exception foreigners.
Surveys in 2004 in Mazar-e-Sharif, Kunduz, Takhar and Faiz Abad, in 2006 additionally in Baharak and Iskashem in the province of Badakhshan, revealed a regular trade in furs of spotted cats, however not as extensive as in Kabul. The most interesting finding was a fur of a cheetah in Mazar-e-Sharif, the first record of this species after 35 years. From the surveys can be concluded that leopards still exist in the whole range of its distribution area in Afghanistan. However they don't allow any conclusion on the population size and its threat by hunting. In contrast to the leopard there exists a recent estimation of the population size of the snow leopard, saying that there are still 100 to 200 snow leopards living in Afghanistan. On the basis of these figures as well as the numbers of furs traded annually a Population and Habitat Viability Analysis was conducted. The result of this analysis is alarming. It has to be assumed that the snow leopard will be extinct in Afghanistan within the next ten years. To improve the protection of spotted cats in Afghanistan it needs both, a better implementation of the existing legislation as well as an awareness campaign among potential clients, i. e. foreigners living in Afghanistan. The second part of this thesis deals with the question of subspecies of leopards in Afghanistan. Out of the 27 subspecies described four are believed to exist in Afghanistan. However, according to a molecularbiological revision of the species there occurs only one subspecies in Afghanistan, Panthera pardus saxicolor. To clarify the subspecies question various measures of furs had been taken in the bazars. The results revealed that the leopards in Afghanistan are the biggest of its species. However a further differentiation according to the area of origin within the country was not possible. Also the traditional differentiation on the basis of colours and patterns on the furs was not possible. In contrast to the molecularbiological investigations published not only samples of zoo animals were available in this study but also samples from the wild. The own results confim that almost all leopards from Afghanistan and Iran belong to one and the same subspecies, P. p. saxicolor. Only in the most eastern part of Afghanistan, the Indian leopard, Panthera pardus fusca, can be found. The International Studbook for the Persian Leopard was analysed. The whole population derives from a few founder animals, which were imported in the midth fifties from Iran and in the late sixties from Afghanistan. To avoid inbreeding later on the Iranian and the Afghan lines were mixed. A female imported in 1968 from Kabul to Cologne is represented in each of the more than 100 today living animals.Mixing the two lines subsequently is justified by the genetic results of this study. Recently acquired animals from the Caucasus, however, should be tested genetically before integrating them into the zoo population. |
Shrestha, R., & Wegge, P. (2008). Habitat relationships between wild and domestic herbivores in Nepalese trans – Himalaya. Journal of Arid Environments, 72, 914–925.
Abstract: In the semi-arid ecosystems of Asia, where pastoralism is a main subsistence occupation, grazing competition from domestic stock is believed to displace the wild ungulates. We studied the habitat relationships among sympatric naur and domestic yak and smallstock in Phu valley in upper Manang district, Nepal, on the basis of their distribution on vegetation types, elevation and slope. To control for the disturbance effect by humans, we collected the data on naur from those ranges where domestic stock were not being attended by herders. We applied correspondence analysis to explore habitat associations among animal groups (n ¬ 1415) within and across-seasons. Within each association, interspecific habitat overlaps and species habitat preferences were calculated. Naur was strongly associated with free-ranging yak as they used similar altitudinal ranges in all seasons, except in spring. Their distributions on vegetation types and slopes were also quite similar, except for a stronger preference for alpine meadows by naur during summer and winter. Naur and smallstock did not form temporal associations as the latter consistently used lower elevations. In autumn and spring, however, naur spatially overlapped with the summer range of smallstock, and both preferred the alpine meadow habitat during these periods. Alpine meadow was the least abundant vegetation type but was consistently and preferentially used by all animal groups across seasons. At high stocking densities, all three animals groups are therefore likely to compete for this vegetation type. The role of spatio-temporal heterogeneity for interpreting the interspecific relationships among ungulates in the semi-arid rangelands of the trans-Himalaya is discussed.
Keywords: blue sheep; Competition; domestic; habitat partitioning; naur; Nepal; pastoralism; pseudois nayaur; trans-himalaya
|
Sangay, T., & Vernes, K. (2008). Human-wildlife conflict in the Kingdom of Bhutan: Patterns of livestock predation by large mammalian carnivores (Vol. 141).
Abstract: We examined predation activity throughout Bhutan by tiger (Panthera tigris), common leopard (Panthera pardus), snow leopard (Uncia uncia) and Himalayan black bear (Ursus thibetanus) on a variety of livestock types using data gathered over the first two years (2003-2005) of a compensation scheme for livestock losses. One thousand three hundred and seventy five kills were documented, with leopards killing significantly more livestock (70% of all kills),
than tigers (19%), bears (8%) and snow leopards (2%). About 50% of livestock killing were of cattle, and about 33% were of horses, with tigers, leopards and snow leopards killing a significantly greater proportion of horses than predicted from availability. Examination of cattle kills showed that leopards killed a significantly greater proportion of smaller prey (e.g., calves), whereas tigers killed a significantly greater proportion of larger prey (e.g., bulls). Overall, livestock predation was greatest in summer and autumn which corresponded with a peak in cropping agriculture; livestock are turned out to pasture and forest during the cropping season, and subsequently, are less well guarded than at other times. Across Bhutan, high horse density and low cattle and yak density were associated with high rates of livestock attack, but no relationship was found with forest cover or human population density. Several northern districts were identified as 'predation hotspots', where proportions of livestock lost to predation were considerable, and the ratio of reported kills to relative abundance of livestock was high. Implications of our findings for mitigating livestock losses and for conserving large carnivores in Bhutan are discussed. Keywords: bear; Bhutan; compensation; conflict; Himalayas; leopard; livestock; predation; snow leopard; tiger
|
Blomqvist, L. (2008). International Pedigree Book for Snow Leopards, Uncia uncia. Helsinki: Helsinki Zoo. |
Ming, M., Yun, G., & Bo, W. (2008). Man & the Biosphere: The special series for the conservation of Snow Leopards in China (Vol. 54).
Abstract: The Chinese magazine <Man & the Biosphere> (Series No. 54, No. 6, 2008) -- A special series for the conservation of Snow Leopards was published by the Chinese National Committee for Man & the Biosphere in 15th December 2008. It is about 80 pages including ten articles with 200 color pictures. The special editors of this issue are the experts from SLT/XCF Prof. MaMing, Mrs. Ge Yun and Mr. Wen Bo. The first paper is “A King of Snow Peaks, Another Endangered Flagship Species” by Dr. Thomas McCarthy, Dr. Urs Breitenmmoser and Dr. Christine Breitenmoser-Wursten (Page 1-1). Another paper “ Conservation : Turning Awareness to Action ” is also from Dr. Thomas McCarthy (Pages from 6-17). There are four articles including the diary and story of the Surveys in Tomur Mountain and Kunlun Mountains written by Prof. MaMing, Mr. XuFeng, Miss Chen Ying and Miss Cheng Yun from the Xinjiang Snow Leopard Group and XCF, the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences. The last is “Snow Leopard Enterprises ” -- A Story from Mongolia by Mrs. Jennifer Snell Rullman and Mrs. Agvaantseren Bayarjargal (Bayara). It is a very useful copy for the conservation in China. Cited as:
Ma Ming, GeYun and WenBo (Special editors of this issue). 2008. The special series for the conservation of Snow Leopards in China. Man & the Biosphere 2008(6): 1-80. Contents 1, A king of snow peaks, another endangered flagship species (Synopsis) ------------- 1-1 The contents --------------------------------------------- ( pages from 2-3 ) 2, Protecting Snow Leopard means protecting a healthy eco-systems -------------- 4-5 3, Conservation: Turning awareness into action -------------- 6-17 4, Chinese Snow Leopard Team goes into action -------------- 18-25 5, A diary of infrared photography -------------- 26-35 6, Why have the snow leopards in the Tianshan Mountains begun to attack livestock? --- 36-43 7, The mystery of the Snow Leopards coming down the Tianshan Mountains ----------- 44-45 8, Snow leopards secluded Home on the Plateau ------------- 46-59 9, He saw Snow Leopards 30 years ago ------------- 60-69 10, Snow Leopard Enterprises -- A story from Mongolia ------------- 70-80 Keywords: conservation; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; China; Chinese; national; 80; 200; endangered; McCarthy; awareness; action; surveys; survey; Tomur; mountain; Kunlun; mountains; Xinjiang; ecology; enterprises; Mongolia; Bayarjargal; 180; flagship-species; species; ecosystems; ecosystem; photography; Tianshan Mountains; attack; livestock; home; plateau; 30; snow-leopard-enterprises; 7080
|
Khan, J. (2008). Markets for Snow Leopards: Enviropreneur Snapshots (Vol. 26).
Abstract: Over the years, many conservation actions and practices to protect the snow leopard have been tried and tested. Those that have been successful and sustainable are programs that link economics with conservation. Some of these practices may not be appreciated by traditional conservationists, but no one can refute the success of these actions. The saying, “when it pays, it stays,” rings true with snow leopard conservation. Locals have realized that their income and prosperity are linked with the protection of wildlife. For conservation efforts to be effective, it is crucial to involve people who share the snow leopard's mountain environment and provide them with economic incentives for
enhancing and protecting the habitat. Keywords: conservation; economic; incentives; income; protection; snow leopard; sustainable; wildlife
|
WWF Mongolia. (2008). Mobile Training Team Report on Strengthening of Cooperation/Partnership among Law Enforcement Agencies for Reduction and Elimination of Environmental Violations and Crimes. Mongolia: Author.
Abstract: Under a joint Decision No: 102/132 by Minister of Justice and Internal Affairs (Ts. Munkh-orgil) and Minister of Nature and Environment (G. Shiilegdamba) dated on April 03, 2008 (Annex1), mobile training “Increased Participation of Law Enforcement Agencies in Reduction of Illegal Wildlife Product Trade” for law enforcement agencies was organized with WWF funding on 11-25 April, 2008. Training was organized in border points in Borshoo in Uvs Aimag, Tsagaan Nuur of Bayan-ulgii Aimag, Yarant in Khovd Aimag and Burgastai in Govi-altai Aimag. This mobile training was jointly organized by the Crime Prevention Coordination Council of the Ministry of Justice and Internal Affairs, the Frontier Defense Department of Frontier Troop Headquarter Management Board of General Office of Frontier Inspection of General Office of Frontier Defense, the State Frontier Specialized Agency at the SSIA, the General Police Office, University of Customs Economics, and Mongolian National Committee of CITES, WWF Mongolia, local office (Uvs Aimag) of Community based Biodiversity Conservation of Altai Sayan Eco-Region Project, and anti-poaching team “Ireves”. Overall, training was focused on how to detect and arrest illegal network of wildlife and its product trades, how to take preventive measures from such illegal actions, and how the law enforcement agencies should cooperate. While trainers tried to teach the topics in simple and clear understandable ways as much as possible, trainees endeavored how to get common understanding on the aspects and assist in decision making concerning the respective illegal actions.
This report entirely covers the results of training on increased participation of law enforcement agencies, particularly the law enforcement agencies operating in the vicinity of State border areas in reduction and elimination of illegal wildlife and its products. As a campaign “Prevention from environmental violations” was announced in April, 2008, some other public events e.g. workshops and seminars, and open forum discussions on national television were jointly organized with local offices of the National Committee of Crime Prevention in the Uvs, Khovd, and Govi-altai Aimags, where training was held. Training organized at the State border points (4) abovementioned was attended by over 120 individuals and workshops and discussions held in Uvs, Khovd, Bayan-ulgii and Govi-altai Aimags were attended by about 110 participants. One of advantages of training and discussions was that they were open to multiple parties/stakeholders and enabled them to learn more and exchange their views/opinions as well as cooperate. |
Espinosa-Aviles, D., Taylor, M. L., Del Rocio Reyes-Montes, M., & Pe'rez-Torrez, A. (2008). Molecular findings of disseminated histoplasmosis in two captive snow leopards (Uncia uncia) (Vol. 39).
Abstract: This paper reports two cases of disseminated histoplasmosis in captive snow leopards (Uncia uncia). Histoplasmosis was diagnosed based on histopathology, immunohistochemistry, transmission electron microscopy, and molecular findings.
Keywords: captive; histoplasmosis; Immunohistochemistry; Molecular; snow leopard; Uncia uncia
|
Sarkar, P., Takpa, J., Ahmed, R., Tiwari, S. K., Pendharkar, A., ul-Haq, S., Miandad, J., Upadhyay, A., Kaul, R. (2008). Mountain Migrants. Survey of Tibetan Antelope (Pantholops hodgsonii) and Wild Yak (Bos grunniens) in Ladakh, Jammu & Kashmir, India. India.
Abstract: The Tibetan antelope (Pantholops hodgsonii), locally called chiru, is mainly confined to the Tibetan plateau in China. A small population migrates into Chang Thang in eastern Ladakh in the state of Jammu and Kashmir in India. The chiru has a geographical range extending approximately 1,600 km across the Tibetan Plateau, with an eastern limit near Ngoring Hu (Tibet Autonomous Region) and a western limit in Ladakh (India). Large-scale hunting for wool and meat has resulted in a decline of its population and only an estimated 75,000 individuals of this species survive in the world today. Its status in India has not been studied in any detail, although sporadic spot surveys have been done in the past. Similarly, very little information is available on status of wild yak (Bos grunniens), the progenitor (closest ancestor) of the domestic yak in India. The animal is distributed mainly in the highlands of the Tibetan plateau including the Qinghai province, Tibetan and Xinjiang autonomous regions and the Quilian mountains in the Gansu province. Small nomadic isolated populations are reported from Ladakh in Jammu and Kashmir (J&K), and even smaller numbers occasionally from Himachal Pradesh, Uttarakhand, Sikkim and Arunachal Pradesh in India. To obtain further information primarily about these two species, the Department of Wildlife Protection, Jammu & Kashmir (DWP) along with the Wildlife Trust of India (WTI) and the Indian Army initiated surveys in Ladakh in the years 2005 and 2006. Surveys were conducted in the Chang Thang and Karakoram Wildlife Sanctuaries of Ladakh in Jammu & Kashmir. The Chang Chenmo (Chang Thang) area lies in the eastern part of Ladakh just north of the famous Pangong Lake, while the Karakoram WLS lies in the north-eastern part of Ladakh, south of the Karakoram Pass. The team found 250 – 300 chiru in the Karakoram area in addition to other mammal species. Both male and female chiru were sighted here between altitudes of 4735 m and 5336 m. A total of 230 individuals were sighted (after deleting double counts) in the year 2005 and 45 individuals in 2006. Based on this, it is estimated that between 250-300 individuals occur in this area. Mean group size of chiru was 4.66±0.435 and varied between one to 34 individuals during 2005, and 4.5 ± 2.77 (SE) during 2006. Apart from chiru, other species encountered from the area includes Tibetan wolf (Canis lupus chanco), red fox (Vulpes vulpes), pale or mountain weasel (Mustela altaica), snow leopard (Uncia uncia), Ladakh urial (Ovis vignei), blue sheep (Pseudois nayaur), woolly hare (Lepus oiostolus), Ladakh pika (Ochotona ladacensis), Royle's pika (Ochotona roylei), Nubra pika (Ochotona nubrica), plateau pika (Ochotona curzoniae), Stoliczka's mountain vole (Alticola stoliczkanus) and silvery mountain vole (Alticola argentatus).
|
Chalise, M. K. (2008). Nepalka Samrakshit Banyajantu (Nepal's Protected Wildlife in Nepali language). Lalitpur, Kathmandu: Shajha Prakashan. |
Chadwick, D. H. (2008). Out of the Shadows: The elusive Central Asian snow leopard steps into a. National geographic, 213(6), 106–129.
Abstract: The elusive Central Asian snow leopard steps into a risk-filled future.
|
Janecka, J.E., Jackson, R., Yuquang, Z., Diqiang, L., Munkhtsog, B., et al. (2008). Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study (Vol. 11).
Abstract: The endangered snow leopard Panthera uncia occurs in rugged, high-altitude regions of Central Asia. However, information on the status of this felid is limited in many areas. We conducted a pilot study to optimize molecular markers for the analysis of snow leopard scat samples and to examine the feasibility of using noninvasive genetic methods for monitoring this felid. We designed snow leopard-specific primers for seven microsatellite loci that amplified shorter segments and avoided flanking sequences shared with repetitive elements. By redesigning primers we maximized genotyping success and minimized genotyping errors. In addition, we tested a Y chromosome-marker for sex identification and designed a panel of mitochondrial DNA primers for examining genetic diversity of snow leopards using scat samples. We collected scats believed to be from snow leopards in three separate geographic regions including north-western India, central China and southern Mongolia. We observed snow leopard scats in all three sites despite only brief 2-day surveys in each area. There was a high rate of species misidentification in the field with up to 54% of snow leopard scats misidentified as red fox. The high rate of field misidentification suggests sign surveys incorporating scat likely overestimate snow leopard abundance. The highest ratio of snow leopard scats was observed in Ladakh (India) and South Gobi (Mongolia), where four and five snow leopards were detected, respectively. Our findings describe a species-specific molecular panel for analysis of snow leopard scats, and highlight the efficacy of noninvasive genetic surveys for monitoring snow leopards. These methods enable large-scale noninvasive studies that will provide information critical for conservation of snow leopards.
Keywords: snow leopard; genetics; scat; noninvasive; survey.
|