Woodland Park Zoo. Snow leopard exhibit plan.
|
Wolf, M., & Ale, S. (2009). Signs at the Top: Habitat Features Influencing Snow Leopard Uncia Uncia Activity in Sagarmatha National Park, Nepal. Journal of Mammalogy, 90(3), 604–611.
Abstract: We used logistic regression to examine factors that affected the spatial distribution of sign (scrapes, feces, footprints, spray or scent marks, and rubbing sites) in a newly reestablished population of snow leopards (Uncia uncia) in Sagarmatha (Mount Everest) National Park, Nepal. Our results indicate that terrain and human activity were the most important factors determining the spatial distribution of leopard activity, whereas presence of their major prey species (Himalayan tahr [Hemitragus jemlahicus]) had only a moderate effect. This suggests that localities at which these animals are active represent a trade-off between suitable habitat and avoidance of potential risk from anthropogenic origins. However, the influence of prey presence was likely underestimated because of the methodology used, and likely weighed in the trade-off as well.
|
Wingard, J. R., & Zahler, P. (2006). Silent Steppe: The Illegal Wildlife Trade Crisis in Mongolia (East Asia and Pacific Environment and Social Development Department, Ed.). Washington D.C.: World Bank.
Abstract: The current study in Mongolia is truly groundbreaking, in that it shows that the problem of commercial wildlife trade is also vast, unsustainable, and a major threat to wildlife populations in other areas. This paper's Executive Summary briefs the topics of wildlife trade in Mongolia, fur trade, medicinal trade, game meat trade, trophy and sport hunting, trade chains and markets, trade sustainability, impacts of wildlife trade on biodiversity conservation, impacts of trade on rural livelihoods, enabling wildlife management, and management recommendations. The main content of the paper includes: wildlife trade survey methods, a history of wildlife trade in Mongolia, wildlife take and trade today, enabling wildlife management, and recommendations and priority actions. The recommendations have been divided into six separate sections, including (1) cross-cutting recommendations, (2) international trade enforcement, (3) domestic trade enforcement, (4) hunting management, (5) trophy and sport hunting management, and (6) community-based approaches. Each section identifies short-term, long-term, and regulatory goals in order of priority within each subsection.
|
Wingard, J. R., & Zahler, P. (2006). Silent Steppe: The Illegal Wildlife Trade Crisis in Mongolia (East Asia and Pacific Environment and Social Development Department, Ed.). Washington, D.C.: World Bank.
Abstract: The current study in Mongolia is truly groundbreaking, in that it shows that the problem of commercial wildlife trade is also vast, unsustainable, and a major threat to wildlife populations in other areas. This paper's Executive Summary briefs the topics of wildlife trade in Mongolia, fur trade, medicinal trade, game meat trade, trophy and sport hunting, trade chains and markets, trade sustainability, impacts of wildlife trade on biodiversity conservation, impacts of trade on rural livelihoods, enabling wildlife management, and management recommendations. The main content of the paper includes: wildlife trade survey methods, a history of wildlife trade in Mongolia, wildlife take and trade today, enabling wildlife management, and recommendations and priority actions. The recommendations have been divided into six separate sections, including (1) cross-cutting recommendations, (2) international trade enforcement, (3) domestic trade enforcement, (4) hunting management, (5) trophy and sport hunting management, and (6) community-based approaches. Each section identifies short-term, long-term, and regulatory goals in order of priority within each subsection.
|
Williams, P. A. (2006). A GIS ASSESSMENT OF SNOW LEOPARD POTENTIAL RANGE AND PROTECTED AREAS THROUGHOUT INNER ASIA; AND THE DEVELOPMENT OF AN INTERNET MAPPING SERVICE FOR SNOW LEOPARD PROTECTION. Master's thesis, , .
Abstract: Snow leopard distribution knowledge is a critical conservation need. During the 2003 Snow Leopard Symposium, a pressing demand for a comprehensive collection of observation data became apparent. Expanding the knowledge of population distribution will help identify areas for conservation and add validity to the potential range map developed by Hunter and Jackson (1997). An equally strong need is an analysis of the extent of protected-area coverage of snow leopard habitat. Another crucial requirement is accurate representation and immediate availability of data to researchers throughout the range.
This project was developed in cooperation with the International Snow Leopard Trust, the Snow Leopard Conservancy, and International Center of Applied Ecology. It is also supported by the Snow Leopard Network, an affiliation of individuals working together to establish effective conservation of the snow leopard throughout Inner Asia. The specific goals of this project are to collect and graphically depict existent knowledge of snow leopard distribution and identify areas lacking data; evaluate the potential range map; assess protected areas to see if snow leopards occur indiscriminately; and produce an internet geographical database and interactive mapping service for research.
This thesis validates the potential range map created by Jackson and Hunter (1997). The majority of sightings (88%) fall within the modeled potential range. This suggests that the map is accurate in representing habitat that supports snow leopards. The thesis also highlights varying degrees of support for protected areas. Most of the potential range lies outside of protected areas. Consequently, most countries contain less than 47 percent of their sightings within protected area boundaries.
This thesis organized and analyzed existing snow leopard data in a geodatabase to evaluate the potential range map and effectiveness of protected areas throughout the range. The geodatabase and internet mapping service provides a standardized method of data exchange and communication among researchers. This is a small step forward in the conservation of the snow leopard, but creates a necessary foundation for future collaborative data exchange projects to follow. The technologies and methodologies used here should be expanded to meet the individual needs of projects.
|
Williams, N. (2008). 2008 International Conference on Range-wide Conservation Planning for Snow Leopards: Saving the Species Across its Range. Cat News, 48, 33–34.
Abstract: Over 100 snow leopard experts, enthusiasts, and government officials gathered in the outskirts of Beijing, China from March 7–11, 2008 for the firstever International Conference on Range-wide Conservation Planning for Snow Leopards. Conference organizers included Panthera, Wildlife Conservation Society (WCS), Snow Leopard Trust (SLT), Snow Leopard Network (SLN), and the Chinese Institute of Zoology.
|
Wildt, D., Pukazhenthi, B., Brown, J., Monfort, S., Howard, J., & Roth, T. (1995). Spermatology for understanding, managing and conserving rare species. Reproduction Fertility and Development, 7(4), 811–824.
Abstract: Most conventional spermatology research involves common mammalian species including livestock, laboratory animals and humans. Yet, there are more than 4500 mammalian species inhabiting the planet for which little is known about basic reproductive biology, including sperm characteristics and function. This information is important, not just as adjunct knowledge, but because the majority of these species are threatened with extinction, largely due to human-induced pressures. The field of conservation is changing rapidly, and global cooperation is emerging among a variety of wildlife enthusiasts, ranging from management authorities of nature reserves to curators of rare zoological collections. Conservation progress depends on systematic, multidisciplinary research first to answer basic questions, with new data then applied to endangered species management plans. The reproductive physiologist is a crucial component of this scheme. Reproduction is the essence of species survival, and enormous effort needs to be directed at these 'untraditional' research species, subspecies and populations. Spermatology research combined with simultaneous efforts in endocrinology, embryology and cryopreservation (among others) can lead to the successful application of assisted reproduction. Examples from this laboratory include an array of wild felid species and a rare cervid and mustelid. Obstacles to success are formidable, including unique species-specificities, diminished genetic diversity and a general lack of resources. Nonetheless, the field offers tremendous opportunities for generating unique knowledge of comparative interest and with conservation utility.
|
Wildlife Times. (2011). Wildlife Times.(November).
Abstract: Snow Leopard Count – A census of Snow Leopard has started in Mustang District, Nepal
|
Wikramanayake, E. D. (1995). Recommendations for Conservation Management of Jigme Dorji National Park.
|
Wikramanayake, E., Moktan, V., Aziz, T., Khaling, S., Khan, A., & Tshering, D. (2006). The WWF Snow Leopard Action Strategy for the Himalayan Region.
Abstract: As a 'flagship' and 'umbrella' species the snow leopard can be a unifying biological feature to
raise awareness of its plight and the need for conservation, which will benefit other facets of Himalayan
biodiversity as well. Some studies of snow leopards have been conducted in the Himalayan region. But,
because of its elusive nature and preference for remote and inaccessible habitat, knowledge of the
ecology and behaviour of this mystical montane predator is scant. The available information, however,
suggests that snow leopards occur at low densities and large areas of habitat are required to conserve
a viable population. Thus, many researchers and conservationists have advocated landscape-scale
approaches to conservation within a regional context, rather than focusing on individual protected areas.
While the issues are regional, the WWF's in the region have developed 5-year strategic actions and
activities, using the regional strategies as a touchstone, which will be implemented at national levels.
The WWF's will develop proposals based on these strategic actions, with estimated budgets, for use by
the network for funding and fund-raising. WWF also recognizes the need to collaborate and coordinate
within the network and with other organizations in the region to achieve conservation goals in an
efficient manner, and will form a working group to coordinate activities and monitor progress.
|