|
Ali, S. M. (1990). The Cats of India. Myforest, 26(3), 275–291.
Abstract: Describes the range, behaviour and ecology of lion Panthera leo, tiger P. tigris, leopard P. pardus, snow leopard P. uncia, clouded leopard Neofelis nebylosa and cheetah Acinonyx jubatus. -P.J.Jarvis
|
|
|
Arias, M., Coals, P., Ardiantiono, Elves-Powell, J., Rizzolo, J. B., Ghoddousi, A., Boron, V., da Silva, M., Naude, V., Williams, V., Poudel, S., Loveridge, A., Payan, E., Suryawanshi, K., Dickman, A. (2024). Reflecting on the role of human-felid conflict and local use in big cat trade. Conservation Science and Practice, 6(e13030), 1–7.
Abstract: Illegal trade in big cat (Panthera spp.) body parts is a prominent topic in scientific and public discourses concerning wildlife conservation. While illegal trade is generally acknowledged as a threat to big cat species, we suggest that two enabling factors have, to date, been under-considered. To that end, we discuss the roles of human-felid conflict, and “local” use in illegal trade in big cat body parts. Drawing examples from across species and regions, we look at generalities, contextual subtleties, ambiguities, and definitional complexities. We caution against underestimating the extent of “local” use of big cats and highlight the potential of conflict killings to supply body parts.
|
|
|
Darehshuri, B. F. (1978). Threatened cats of Asia. Wildlife, 20(9), 396–400.
Abstract: Man's hand is turned against the wild cats wherever they occur, often due to the value of their fur, but also because of the danger they sometimes pose to domestic stock and even human beings. All the larger Asian cats are threatened, and on this and the following pages we look at three of them – the Asiatic cheetah, the Siberian tiger, and the snow leopard.
|
|
|
Formozov A.N. (1952). Tiger and snow leopard.
Abstract: Over the last decades tiger, leopard and snow leopard were fully exterminated in many areas, where they formerly were common species and now became very rare ones. Few leopards can still be found in Caucasus, Copet-Dag (Turkmenistan) and south of Primorskiy krai. Irbis is remaining a common species only in the difficult-of-access highland areas of Tien Shan and very rare in the Altai. Tiger traces are sometimes found in the Amudarya river valley and in the taiga Sihote-Alinya in the Far East.
|
|
|
Formozov A.N. (1989). Tiger. Leopard. Snow Leopard.
Abstract: The number of large cats is reducing. These animals are hold out in the most difficult of access places. During long time snow leopard was a poorly known animal. The situation was changed with developing of mountain tourism and mountaineering. It's necessary to reduce the capturing snow leopards for zoological gardens.
|
|
|
Hongfa, X. and K., C. (2006). The State of Wildlife Trade in China. Information on the trade in wild animals and plants in China 2006..
Abstract: Welcome to the first edition of The State of Wildlife Trade in China. This publication takes a broad look at wildlife trade over the past year, particularly concerning the impact of China's consumption on globally important biodiversity 'hotspots'. The focus of The State of Wildlife Trade in China is on emerging trends in China's wildlife trade and up-to-date reviews of work to stop illegal wildlife trade and support sustainable trade. The lead story in this issue is the illegal trade in Tigers and other Asian big cats. During 2006, surveys continued to document this illegal trade, as well as highlight opportunities for action. Other stories in this issue give updates on trade in reef fishes from Southeast Asia's 'Coral Triangle' and in timber from the forests of the Russian Far East, Borneo, and East Africa. China's wildlife trade presents both challenges and opportunities. This annual report aims to provide current information about wildlife trade in China and to provide avenues for involvement in China's conservation community. It is part of TRAFFIC's on-going commitment to turn information into action.
Keywords: clouded leopard, economy, illegal killing, leopard, Neofelis nebulosa, Panthera pardus, Panthera tigris, poaching, policy, snow leopard, tiger, trade, TRAFFIC, Uncia uncia
|
|
|
Izold, J. (2008). Snow Leopard Enterprise: a conservation project that saves an endangered species and supports needy families. Anim.Keepers' Forum, 9(5), 359–364.
Abstract: The World Conservation Union listed the snow leopard (Uncia uncia) as endangered in 1974. With as few as 3,500 snow leopards left in the wild, scientists placed the snow leopard on the IUCN Red List of critically endangered species shared by animals such as the giant panda and tiger. In an effort to save the snow leopard from extinction, former zoo employee Helen Freeman founded the Snow Leopard Trust in 1981. The Snow Leopard Trust works to save this elusive cat by incorporating community-based conservation projects. One of these project Leopard Enterprise (SLE), impacts poverty stricken communities in Mongolia, Kyrgyz Republic, and Pakistan. It assists over 300 families in its conservation efforts. The economic incentives provided via SLE have led participating communities not to harm the snow leopard or its prey, and to practice sustainable herding. Since the project began in 1997, the number of snow leopards harmed around the communities' territories has dropped to near zero. Additionally, the annual income of families that utilize the benefits of SLE has increased by 25% to 40%. SLE creates this economic benefit by providing the training and equipment necessary to make desirable products from the wool of herd animals. Snow Leopard Trust then purchases these handicraft items from the local people and them globally. Zoos can expand their conservation efforts by simply offering these items in their gift shops. Woodland Park Zoo (WPZ) was the first zoological institution to sell the products, and WPZ continues to generate revenue from them. SLE is a golden opportunity for zoos to increase revenue, assist poor families, and save an endangered species and fragile ecosystem.
|
|
|
Jackson, R., Roe, J., Wangchuk, R., & Hunter, D. (2005). Camera-Trapping of Snow Leopards. Cat News, 42(Spring), 19–21.
Abstract: Solitary felids like tigers and snow leopards are notoriously difficult to enumerate, and indirect techniques like pugmark surveys often produce ambiguous information that is difficult to interpret because many factors influence marking behavior and frequency (Ahlborn & Jackson 1988). Considering the snow leopard's rugged habitat, it is not surprising then that information on its current status and occupied range is very limited. We adapted the camera-trapping techniques pioneered by Ullas Karanth and his associates for counting Bengal tigers to the census taking of snow leopards in the Rumbak watershed of the India's Hemis High Altitude National Park (HNP), located in Ladakh near Leh (76ø 50' to 77ø 45' East; 33ø 15' to 34ø 20'North).
|
|
|
Johnsingh, A. J. T. (2006). A roadmap for conservation in Uttaranchal.
Abstract: The enchanting state of Uttaranchal, carved out of Uttar Pradesh on 9th November 2000, has a total area of ca. 53,485 km2 with a population density of 160 persons/ km2, much lower than the national average of 324/km2. This young state can take pride in the fact that 13.42% of its area is under protected areas. The state has varied landscapes: snow-capped and conifer forest covered mountains in the north, forest covered foothills with numerous perennial rivers and streams, locally known as the bhabar tract which includes the Himalayan foothills and the Shivalik range. As a result, the land is home to a variety of fascinating wildlife such as the golden mahseer (Tor putitora), king cobra (Ophiophagus hanna), Himalayan monal (Lophophorus impejanus), great hornbill (Buceros bicornis), Himalayan tahr (Hemitragus jemlahicus), bharal (Pseudois nayaur), Himalayan musk deer (Moschus chrysogaster), goral (Nemorhaedus goral), elephant (Elephas maximus), snow leopard (Panthera uncia), leopard (P. pardus), black bear (Ursus thibetanus), and tiger (P. tigris). All across their range, most of these species are endangered. The potential of this state, with about 800 kilometers of riverine habitat, can only be surpassed by Arunachal Pradesh in terms of golden mahseer conservation. The mountains, bedecked with the scarlet flowers of rhododendron (Rhododendron arboreum) in the summer months, can be a veritable home to many forms of pheasants, mountain ungulates and carnivores, provided poaching for trade is eliminated and hunting for the pot is brought under control. The bhabar forests of this state, ca. 7,500 km2, extending between Yamuna and Sharda rivers (Fig. 1.), can easily support a population of about 1000 elephants and 200 tigers as long as this large habitat, now fragmented in three blocks, is managed and protected as one continuous habitat for wildlife. Six villages, gujjar settlements and encroachments need to be moved away from the main wildlife habitat which goes along the bhabar tract. Although the conservation of these habitats can eventually bring in immense benefits through well-planned ecotourism programmes that are rapidly catching up in the state, initial conservation efforts would need a substantial amount of funds.
Keywords: carnivores, conservation, forest, habitat, hunting, landscape, Panthera uncia, poaching, snow leopard, species, tiger, Uncia uncia, ungulates, Uttar Pradesh, Uttaranchal
|
|
|
Karanth, K. U., Nichols, J.D., Seidensticker, J., Dinerstein, E., David Smith, J.L., McDougal, C., Johnsingh, A.J.T., Chundawat, R.S., Thapar, V. (2003). Science deficiency in conservation practice: the monitoring of tiger populations in India. Animal Conservation, 6, 141–146.
Abstract: Conservation practices are supposed to get refined by advancing scientific knowledge. We study this phenomenon in the context of monitoring tiger populations in India, by evaluating the ‘pugmark census method’ employed by wildlife managers for three decades. We use an analytical framework of modern animal population sampling to test the efficacy of the pugmark censuses using scientific data on tigers and our field observations. We identify three critical goals for monitoring tiger populations, in order of increasing sophistication: (1) distribution mapping, (2) tracking relative abundance, (3) estimation of absolute abundance. We demonstrate that the present census-based paradigm does not work because it ignores the first two simpler goals, and targets, but fails to achieve, the most difficult third goal. We point out the utility and ready availability of alternative monitoring paradigms that deal with the central problems of spatial sampling and observability. We propose an alternative sampling-based approach that can be tailored to meet practical needs of tiger monitoring at different levels of refinement.
|
|
|
Kashkarov, E. (2017). ZOOGEOGRAPHICAL DISCOVERIES IN WESTERN BERINGIA.208–217.
Abstract: Among zoogeographical discoveries of the frontier of XXI century there is nothing more interesting
than discoveries of Rodion Sivolobov in Western Beringia. Beringia has surprised us by
paleontological discoveries many centuries ago, and also surprised by modern one. Somehow they
came out of attention of all International environmental foundations and Academies of the world, as
if on purpose to show their professional incompetence. It is the only way to describe the
organization, not to notice the appearance of such big cats as the Snow leopard and Amur tiger for
5,000 kilometers from the border of main range, as well as large Pleistocene relict � the Irkuyembear.
All three endangered species of mammals found by Sivolobov in Koryakia and Chukotka, and
for the snow leopard he took the world's first photo in Beringia.
New facts suggests two things: (1) the ancient refuges of big cats locate to Koryakia and
Chukotka much closer of main ranges, (2) global warming, changing natural environment on the
waves of hundred-year rhythms, periodically pushing irbis and tiger on the ways of ancient
Beringian migrations stored in their genetic memories. Irkuyem is a contemporary of the mammoth.
209
Unlike it, this bear lived up to our days, but remained undetected even by the large “mammoths” of
science.
|
|
|
Mishra, C., Madhusudan, M. D., & Datta, A. (2006). Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs (Vol. 40).
Abstract: The high altitudes of Arunachal Pradesh,India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carnivores, 10 ungulates and 5 primates) were recorded, of which 13 are categorized as Endangered or Vulnerable on the IUCN Red List. One species of primate, the Arunachal macaque Macaca munzala, is new to science and the Chinese goral Nemorhaedus caudatus is a new addition to the ungulate fauna of the Indian subcontinent. We documented peoples' dependence on natural resources for grazing and extraction of timber and medicinal plants. The region's mammals are threatened by widespread hunting. The snow leopard Uncia uncia and dhole Cuon alpinus are also persecuted in retaliation for livestock depredation. The tiger Panthera tigris, earlier reported from the lower valleys, is now apparently extinct there, and range reductions over the last two decades are reported for bharal Pseudois nayaur and musk deer Moschus sp.. Based on mammal species richness, extent of high altitude habitat, and levels of anthropogenic disturbance, we identified a potential site for the creation of Arunachal's first high altitude wildlife reserve (815 km2). Community-based efforts that provide incentives for conservation-friendly practices could work in this area, and conservation awareness programmes are required, not just amongst the local communities and schools but for politicians, bureaucrats and the army.
|
|
|
Natalia, E., Sergey, N., Vyacheslav, R., Fedor, V., Antonio, H. B. J., Andrey, P., Alexander, K., Ekaterina, P. (2017). HELMINTHS OF RARE FELINE SPECIES (FELIDAE) IN SIBERIA AND THE RUSSIAN FAR EAST. International Journal of Research In, , 70–74.
Abstract: Parasites diversity in close-related species of hosts may be different depending on habitat use and climatic conditions. The aim of this study was to
analyze parasites fauna in four felid species inhabiting Russian Far East and South Siberia (including taiga forest and mountain treeless areas). We
have collected 272 feces samples of four felid species: Amur tiger, Amur leopard, snow leopard and Pallas� cat. Helminths (eggs and larvae) in
excrements were studied by flotation using a saturated solution of ammonium nitrate. We have described 10 helminths species in Amur tiger feces, 6
� in Amur leopard, 2 � in snow leopard and 3 � in Pallas� cat. Obviously, snow leopard and Palls� cat had lower helminths diversity than two other
species. These differences can be explained, to some extent, by climatic parameters. The climate in the snow leopard and Pallas' cat habitats is
described by sharp and significant temperature fluctuations – the annual temperature difference can exceed 90°C, which may lead to lower survival of
the number of infectious agents in Pallas' cat excrements. In addition, the snow cover that can protect helminth eggs and larvae from the cold
temperatures especially in Amur tiger and Amur leopard habitats. Possibly, another important factor is the spatial and social organization of Pallas'
cats, with a low frequency of contacts with other individuals. Such way, species-specific differences in helminths were related, probably, with the
species evolution in different habitats
|
|
|
Riordan, P. (1998). Unsupervised recognition of individual tigers and snow leopards from their footprints (Vol. 1).
Abstract: This study presents the testing of two unsupervised classification methods for their ability to accurately identify unknown individual tigers, Panthera tigris, and snow leopards, Panthera uncia, from their footprints. A neural-network based method, the Kohonen self-organizing map (SOM), and a Bayesian method, AutoClass, were assessed using hind footprints taken from captive animals under standardized conditions. AutoClass successfully discriminated individuals of both species from their footprints. Classification accuracy was greatest for tigers, with more misclassification of individuals occurring for snow leopards. Examination of variable influence on class formations failed to identify consistently influential measurements for either species. The self-organizing map did not provide accurate classification of individuals for either species. Results were not substantially improved by altering map dimensions nor by using principal components derived from the original data. The interpretation of resulting classifications and the importance of using such techniques in the study of wild animal populations are discussed. The need for further testing in the field is highlighted.
|
|
|
Rothschild, B. M., Rothschild, C., & Woods, R. J. (1998). Inflammatory arthritis in large cats: An expanded spectrum of spondyloarthropathy. Journal of Zoo and Wildlife Medicine, 29(3), 279–284.
Abstract: Spondyloarthropathy was documented for the first time in 14 (3.7%) of 386 large cats, affecting eight species belonging to three genera. The limited distribution of joint erosions, associated with spine and sacroiliac joint pathology, was indistinguishable from that occurring in humans with spondyloarthropathy of the reactive type. This form of inflammatory arthritis is almost twice as common as osteoarthritis (for felids as a whole), and animal well-being may be enhanced by its recognition and by initiation of specific treatment.
|
|
|
Sangay, T., & Vernes, K. (2008). Human-wildlife conflict in the Kingdom of Bhutan: Patterns of livestock predation by large mammalian carnivores (Vol. 141).
Abstract: We examined predation activity throughout Bhutan by tiger (Panthera tigris), common leopard (Panthera pardus), snow leopard (Uncia uncia) and Himalayan black bear (Ursus thibetanus) on a variety of livestock types using data gathered over the first two years (2003-2005) of a compensation scheme for livestock losses. One thousand three hundred and seventy five kills were documented, with leopards killing significantly more livestock (70% of all kills),
than tigers (19%), bears (8%) and snow leopards (2%). About 50% of livestock killing were of cattle, and about 33% were of horses, with tigers, leopards and snow leopards killing a significantly greater proportion of horses than predicted from availability. Examination of cattle kills showed that leopards killed a significantly greater proportion of smaller prey (e.g., calves), whereas tigers killed a significantly greater proportion of larger prey (e.g., bulls). Overall, livestock predation was greatest in summer and autumn which corresponded with a peak in cropping agriculture; livestock are turned out to pasture and forest during the cropping season, and subsequently, are less well guarded than at other times. Across Bhutan, high horse density and low cattle and yak density were associated with high rates of livestock attack, but no relationship was found with forest cover or human population density. Several northern districts were identified as 'predation hotspots', where proportions of livestock lost to predation were considerable, and the ratio of reported kills to relative abundance of livestock was high. Implications of our findings for mitigating livestock losses and for conserving large carnivores in Bhutan are discussed.
|
|
|
Sivolobov, R. (2017). ENDANGERED SPECIES OF KORYAKIA AND CHUKOTKA: IRBIS, TIGER AND THE IRKUYEM-BEAR.225–233.
Abstract: After 30 years of searching for the mysterious Beringian snow cat in vast space of Koryakia and Chukotka
one of the five cameras recorded finally this beast at night in September 2014. This is not so much a
sensation as a real scientific discovery, saying that the hearts of the snow leopard population resettlement are
not in 5000 km from the main range boundaries, but much closer. Where? � will show further studies.
In addition to the snow leopard in the North-Eastern Asia, it found two more endangered large
mammal species: the Amur tiger and the relict of the Ice Age � the Irkuyem-bear. Author has given these
animals his life and his article devoted to this topic.
|
|
|
Sludskiy A.A. (1982). Mammals.
Abstract: The author describes the lot of extinct and endangered mammal species inhabitants of various continents. Over the last 2,000 years, on the territory now occupied by the USSR, 11 species and sub-species of mammals died away and several dozens of species and sub-species are now endangered or rare and require special conservation measures. Big Felidae species include tiger (150 170 animals), leopard (38-48 animals, of which 20-25 permanently live in the Far East, the rest migrating), snow leopard, whose population reduced drastically (about 1,000 animals), caracal, Central Asia lynx, and manul.
|
|
|
Sokov A.I. (1986). Environmental prerequisites for protection and sustainable use of predatory mammals in Tajikistan (Vol. Vol. 3.).
Abstract: In Tajikistan it is necessary to preserve big predators listed in the Red Book, such as Uncia uncia, Ursus arctos isabellinus, Hyaena hyaena, Felis lynx isabellina, Panthera pardus ciscaucasica. An anthropogenic influence has resulted in the species' habitat shrinkage, deficit of food, disturbance of trophic interactions. It is necessary to restore a tiger population in the Tigrovaya Balka nature reserve, and resolve the issue of protection and sustainable use of commercial predatory species.
|
|