Home | << 1 >> |
Ahlborn, G., & Jackson, R. M. (1988). Marking in Free-Ranging Snow Leopards in West Nepal: A preliminary assesment. In H.Freeman (Ed.), (pp. 25–49). India: Snow Leopard Trust and the Wildlife Institute of India.
Abstract: Describes and Quantifies snow leopard marking behaviour, based primarily on sign, gatherd during a four year study in Nepal. Emphasis is on scrapes and spray markings, detailing their frequency of occurence realtive to habitat characteristics and season. Both sexes mark intensively, sign abundance is associated with intensity of use, and sign is concentrated along breaks in terrain.
|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; region; Nepal; Report; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; 1960; endangered; Sagarmatha; High; Himalaya; tourism; impact; establishment; national; national park; National-park; park; 1980; area; Tibet; surveys; survey; status; Cats; cat; prey; research; project; sign; transects; transect; length; valley; Response; hunting; recovery; Himalayan; tahr; density; densities; range; pugmarks; sighting; 60; study; population; predators; predator; structure; prey species; prey-species; species; populations; mortality; effects; predation; population dynamics
|
Ale, S., Shrestha, B., and Jackson, R. (2014). On the status of Snow Leopard Panthera Uncia (Schreber 1775) in Annapurna, Nepal. Journal of Threatened Taxa, (6(3)), 5534–5543. |
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
Keywords: Nepal; recovery; Sagarmatha Mount Everest National Park; snow leopard; Uncia uncia; surveys; survey; snow; snow-leopard; leopard; uncia; Uncia-uncia; valley; Sagarmatha; national; national park; National-park; park; using; information; management; system; research; transects; transect; sign; areas; area; snow leopards; snow-leopards; leopards; 40; Himalayan; tahr; musk; musk-deer; deer; location; recent; species; grazing; land; Forest; habitat; domestic; wild; ungulates; ungulate; livestock; tourism; development; traditional; land use; land-use; use; wildlife
|
Froede, K. and J., R. (2001). Snow Leopard Manual Field Study Techniques for the Kingdom Nepal. Kathmandu, Nepal: WWF Nepal.
Abstract: The publication of this manual aims sharing and facilitating the study on snow leopard and its prey species among mid-level professionals interested in conducting fieldwork on their own. The manual is derived from the 1996 “Snow Leopard Survey and Conservation Handbook” written by Dr. Rodney Jackson and Dr. Don Hunter and published by International Snow Leopard Trust (ISLT) based in seatle, Washington, USA. The first section introduces the topic, the second and third section deal with presence/ absence and abundance survey methods. The various survey-froms with instructions are given in the annexes.
|
Jackson, R., Zongyi, W., Xuedong, L., & Yun, C. (1994). Snow Leopards in the Qomolangma Nature Preserve of Tibet Autonomous Region. In J.L.Fox, & D.Jizeng (Eds.), (pp. 85–95). Usa: Islt.
Keywords: Qomolangma; protected-area; parks; preserves; refuge; Nepal; Tibet; China; field-study; blue-sheep; scrapes; sprays; scat; feces; pug-marks; sign; transects; interviews; herders; livestock; predation; predator; traps; trapping; habitat; status; distribution; threats; hunting; pelts; skins; fur; coats; poaching; bones; medicine; Cites; conflict; trade; conservation; management; protected area; protected; area; areas; protected areas; field study; field; study; pug marks; blue; sheep; browse; pug; marks; 3490
|
Jackson, R. M., & Ahlborn, G. (1988). Observations on the Ecology of Snow Leopard in West Nepal. In H.Freeman (Ed.), (pp. 65–87). India: Snow Leopard Trust and Wildlife Institute of India.
Abstract: This summary of a four year field study by Jackson and Ahlborn begging in 1982 and concluding in 1985, discusses behaviour, trapping and tracking techniques, home range, activity patterns, prey and habitat and survey methods.
Keywords: Nepal; field study; predator; prey; home-range; habitat; tracking; trapping; radio-collars; behavior; activity; patterns; sign; scrapes; feces; marking; markings; browse; home range; home; range; radio; collar; radio collar; collars; radio collars; research; 1670
|
Khan, A. (2004). Snow Leopard Occurrence in Mankial Valley, Swat: Final report.
Abstract: Mankial is a sub-valley of the Swat Kohistan. Temperate ecosystem of the valley is intact to a greater extent, which provides habitat to a variety of species of plants, animals and birds. Snow leopard is reported from the valley. To confirm its occurrence, the HUJRA (Holistic Understanding for Justified Research and Action), conducted the study titled “Snow Leopard Survey in Mankial Valley, district Swat, NWFP”. The author provided technical support, while ISLT (The International Snow Leopard Trust) funded the project under its small grants program. The World Wide Fund for Nature-Pakistan (WWF-Pakistan) and the Mankial Community Organization (MCO) facilitated surveys under the project. Surveys revealed that Snow leopard visits parts of the Mankial valley in winter months. Information from the local community shows that Snow leopard remains in the Serai (an off-shoot of the Mankial Valley) from early winter to early spring. Intensive surveys of the prime snow leopard winter habitat in the valley found several snow leopard signs including pugmarks, feces, and scrapes. The study also found occurrence of prey species through indirect evidence though. However, information from the local community confirmed that in the recent past there was a good population of markhor in the valley, which is now reduced to less than 50, mostly due to hunting and habitat disturbance. Hunting is part of the local culture and lifestyle. During winter months hunting pressure is low, as most of the local community migrates to warmer plain areas than Mankial Valley. However, those who live in the area lop oak branches for feeding their livestock and cut trees for burning, in addition to hunting prey species of snow leopard. This has resulted in stunted oak vegetation in most of the lower reaches of the valley and decline of the markhor population.
Keywords: snow; snow leopard; snow-leopard; leopard; valley; Report; project; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; ecosystem; habitat; species; plants; plant; Animals; Animal; birds; research; action; study; survey; Support; Islt; community; Organization; surveys; winter; information; local; sign; pugmarks; feces; scrapes; scrape; prey; prey species; prey-species; recent; population; markhor; hunting; Culture; Pressure; areas; area; feeding; livestock; burning; decline
|
Khanyari, M., Dorjay, R., Lobzang, S. Bijoor, A., Suryawanshi, K. (2023). Co-designing conservation interventions through participatory action research in the Indian Trans-Himalaya. Ecological Solutions and Evidence, 2023;4(e12232), 1–14.
Abstract: 1. Community-based conservation, despite being more inclusive than fortress con- servation, has been criticized for being a top-down implementation of external ideas brought to local communities for conservation's benefit. This is particularly true for Changpas, the pastoral people of Changthang in trans-Himalayan India who live alongside unique wildlife.
2. Our main aim was to co-design conservation interventions through participatory action research. We worked with two Changpa communities, to understand the issues faced by them. Subsequently, we co-designed context-sensitive interventions to facilitate positive human–nature interactions. We did so by integrating the PARTNERS (Presence, Aptness, Respect, Transparency, Empathy, Responsiveness, Strategic Support) principles with the Trinity of Voice (Access, Standing and Influence). 3. In Rupsho, we facilitated focus group discussions (FGDs) led by the community. We found livestock depredation by wildlife was primarily facilitated by the weather. This led to co-designing of a new corral design, which was piloted with seven households, safeguarding 2385 pashmina goats and sheep. Approximating the value of each sheep/goat to be USD125, this intervention amounts to a significant economic protection of USD c. 42,500 for each household. This is along with intangible gains of trust, ownership and improved self-esteem. 4. In Tegazong, a restricted area adjoining the Indo-China border with no previous research records, we worked with 43 Changpa people to co-create research questions of mutual interest. Wildlife presence and reasons for livestock loss were identified as areas of mutual interest. The herders suggested they would record data in a form of their choice, for 6 months, while they live in their winter pastures. This participatory community monitoring revealed nutrition and hypothermia to be a key cause of livestock death. Subsequently, we delimited two previously untested interventions: lamb cribs and provisioning of locally sourced barley as a feed supplement. The wildlife monitoring recorded the first record of Tibetan Gazelle Procapra picticuadata, outside of their known distribution, in Tegazong. 5. We aim to highlight the benefits of co-designing projects with local communities that link research and conservation, while also discussing the challenges faced. Ultimately, such projects are needed to ensure ethical knowledge generation and conservation, which aims to be decolonial and inclusive. |
Khanyari, M., Dorjay, R., Lobzang, S., Bijoor, A., Suryawanshi, K. (2023). Co-designing conservation interventions through participatory action research in the Indian Trans-Himalaya. Ecological Solutions and Evidence, 4(e12232), 1–14.
Abstract: 1. Community-based conservation, despite being more inclusive than fortress conservation, has been criticized for being a top-down implementation of external ideas brought to local communities for conservation's benefit. This is particularly true for Changpas, the pastoral people of Changthang in trans-Himalayan India who live alongside unique wildlife.
2. Our main aim was to co-design conservation interventions through participatory action research. We worked with two Changpa communities, to understand the issues faced by them. Subsequently, we co-designed context-sensitive interventions to facilitate positive human–nature interactions. We did so by integrating the PARTNERS (Presence, Aptness, Respect, Transparency, Empathy, Responsiveness, Strategic Support) principles with the Trinity of Voice (Access, Standing and Influence). 3. In Rupsho, we facilitated focus group discussions (FGDs) led by the community. We found livestock depredation by wildlife was primarily facilitated by the weather. This led to co-designing of a new corral design, which was piloted with seven households, safeguarding 2385 pashmina goats and sheep. Approximating the value of each sheep/goat to be USD125, this intervention amounts to a significant economic protection of USD c. 42,500 for each household. This is along with intangible gains of trust, ownership and improved self-esteem. 4. In Tegazong, a restricted area adjoining the Indo-China border with no previous research records, we worked with 43 Changpa people to co-create research questions of mutual interest. Wildlife presence and reasons for livestock loss were identified as areas of mutual interest. The herders suggested they would record data in a form of their choice, for 6 months, while they live in their winter pastures. This participatory community monitoring revealed nutrition and hypothermia to be a key cause of livestock death. Subsequently, we delimited two previously untested interventions: lamb cribs and provisioning of locally sourced barley as a feed supplement. The wildlife monitoring recorded the first record of Tibetan Gazelle Procapra picticuadata, outside of their known distribution, in Tegazong. 5. We aim to highlight the benefits of co-designing projects with local communities that link research and conservation, while also discussing the challenges faced. Ultimately, such projects are needed to ensure ethical knowledge generation and conservation, which aims to be decolonial and inclusive. |
Khatiwada, J. R., Chalise, M. K., & Kyes, R. (2007). Survey of Snow Leopard (Uncia uncia) and Blue Sheep (Pseudois nayaur) populations in the Kangchenjunga Conservation Area (KCA), Nepal. Final report.
Abstract: This study was carried out in the Kangchenjunga Conservation Area (KCA), Eastern Nepal from Feb – Nov 2007. We used the Snow Leopard Information Management System, SLIMS (second order survey technique) to determine the relative abundance of snow leopard in the upper part of KCA. Altogether, 36 transects (total length of 15.21 km) were laid down in the major three blocks of KCA. 104 Signs (77 scrapes, 20 feces, 2 Scent mark, 3 Pugmarks and 2 hairs) were recorded. Fixed-point count method was applied for blue sheep from appropriate vantage points. We counted total individual in each herd using 8x42 binocular and 15-60x spotting scope. A total of 43 herds and 1102 individuals were observed in the area. The standard SLIMS questionnaire was conducted to find out relevant information on livestock depredation patterns. Out of 35 households surveyed in KCA, 48% of herders lost livestock due to snow leopards. A total of 21 animals were reportedly lost due to snow leopards from August to September 2007.
Keywords: survey; snow; snow leopard; snow-leopard; leopard; uncia; Uncia uncia; Uncia-uncia; blue; blue sheep; blue-sheep; sheep; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; populations; population; conservation; area; Nepal; Report; study; information; management; system; Slims; relative abundance; abundance; transects; transect; length; sign; scrapes; scrape; 20; feces; scent; pugmarks; hairs; Hair; using; livestock; livestock depredation; livestock-depredation; depredation; patterns; herders; herder; snow leopards; snow-leopards; leopards; Animals; Animal
|
Kyes, R., & Chalise, M. K. (2005). Assessing the Status of the Snow Leopard Population in Langtang National Park, Nepal.
Abstract: This project is part of an ongoing snow leopard study established in 2003 with support from the ISLT. The study involves a multifaceted approach designed to provide important baseline data on the status of the snow leopard population in Langtang National Park (LNP), Nepal and to generate long-term support and commitment to the conservation of snow leopards in the park. The specific aims include: 1) conducting a population survey of the snow leopards in LNP, focusing on distribution and abundance; 2) assessing the status of prey species populations in the park; and 3) providing educational outreach programs on snow leopard conservation for local school children (K-8) living in the park. During the 2004 study period, snow leopard signs were observed (including pugmarks and scats) although somewhat fewer than in 2003. Similarly, the average herd size of the snow leopards' primary prey species in LNP (the Himalayan thar) was a bit lower than in 2003. There is speculation that the thar populations and the snow leopards may be moving to more remotes areas of the park perhaps in response to increasing pressure from domestic livestock grazing. This possibility is being addressed during the 2005 study period.
Keywords: status; snow; snow leopard; snow-leopard; leopard; population; Langtang; national; national park; National-park; park; Nepal; project; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; biodiversity; research; study; Support; Islt; approach; Data; conservation; snow leopards; snow-leopards; leopards; survey; distribution; abundance; prey; prey species; prey-species; species; populations; programs; local; sign; pugmarks; scats; scat; primary; Himalayan; areas; area; Response; Pressure; domestic; domestic livestock; livestock; grazing
|
Li, J. S., G, B. McCarthy, T. M. Wang, D. Jiagong, Z. Cai, P. Basang, L. Lu, Z. (2012). A Communal Sign Post of Snow Leopards (Panthera uncial) and Other Species on the Tibetan Plateau China. International Journal of Biodiversity, 2013, 1:8.
Abstract: The snow leopard is a keystone species in mountain ecosystems of Central Asia and the Tibetan Plateau, However, little is known about the interactions between snow leopards and sympatric carnivores. Using infrared cameras, we found a rocky junction of two valleys in Sanjiangyuan area on the Tibetan Plateau where many mammals in this area passed and frequently marked and sniffed the site at the junction. We suggest that this site serves as a sign post to many species in this area, especially snow leopards and other carnivores. The marked signs may also alert the animals passing by to temporally segregate their activities to avoid potential conflicts. We used the Schoener index to measure the degree of temporal segregation among the species captured by infrared camera traps at this site. Our research reveals the probable ways of both intra- and interspecies competition. This is an important message to help understand the structure of animal communities. Discovery of the sign post clarifies the importance of identifying key habitas ad sites of both snow leopards and other species for more effective conservation.
|
Mallon, D. (1984). The snow leopard in Ladakh. International Pedigree Book of Snow Leopards, 4, 23–37.
Abstract: Reports on 1 summer survey and four winter surveys covering some 3100 km in Ladakh, India. Reports on snow leopard sign commonly found, distribution, prey, attacks on livestock and peoples reaction, mortality factors and conservation status. Suggest recomendations for preventing unnecessary killing of snow leopards and estimates population of 100 to 200 snow leopards in Ladakh
|
McCarthy, K., Fuller, T., Ming, M., McCarthy, T., Waits, L., & Jumabaev, K. (2008). Assessing Estimators of Snow Leopard Abundance (Vol. 72).
Abstract: The secretive nature of snow leopards (Uncia uncia) makes them difficult to monitor, yet conservation efforts require accurate and precise methods to estimate abundance. We assessed accuracy of Snow Leopard Information Management System (SLIMS) sign surveys by comparing them with 4 methods for estimating snow leopard abundance: predator:prey biomass ratios, capture-recapture density estimation, photo-capture rate, and individual identification through genetic analysis. We recorded snow leopard sign during standardized surveys in the SaryChat Zapovednik, the Jangart hunting reserve, and the Tomur Strictly Protected Area, in the Tien Shan Mountains of Kyrgyzstan and China. During June-December 2005, adjusted sign averaged 46.3 (SaryChat), 94.6 (Jangart), and 150.8 (Tomur) occurrences/km. We used
counts of ibex (Capra ibex) and argali (Ovis ammon) to estimate available prey biomass and subsequent potential snow leopard densities of 8.7 (SaryChat), 1.0 (Jangart), and 1.1 (Tomur) snow leopards/100 km2. Photo capture-recapture density estimates were 0.15 (n = 1 identified individual/1 photo), 0.87 (n = 4/13), and 0.74 (n = 5/6) individuals/100 km2 in SaryChat, Jangart, and Tomur, respectively. Photo-capture rates (photos/100 trap-nights) were 0.09 (SaryChat), 0.93 (Jangart), and 2.37 (Tomur). Genetic analysis of snow leopard fecal samples provided minimum population sizes of 3 (SaryChat), 5 (Jangart), and 9 (Tomur) snow leopards. These results suggest SLIMS sign surveys may be affected by observer bias and environmental variance. However, when such bias and variation are accounted for, sign surveys indicate relative abundances similar to photo rates and genetic individual identification results. Density or abundance estimates based on capture-recapture or ungulate biomass did not agree with other indices of abundance. Confidence in estimated densities, or even detection of significant changes in abundance of snow leopard, will require more effort and better documentation. |
McCarthy, T. (1999). Snow leopard conservation project, Mongolia: WWF Project Summary of Field Work.
Keywords: irbis-enterprises; Mongolia; gobi; Altai; Altay; habitat; status; distribution; Uvs; conservation; parks; preserves; refuge; protected-area; herders; livestock; predator; prey; field-work; field-study; field-studies; training; Slims; transects; sign; sprays; scrapes; markings; population; browse; irbis; enterprises; protected; area; field work; field; work; field study; study; 3870
|
Ming, M., Chundawat R.S., Jumabay, K., Wu, Y., Aizeizi, Q., & Zhu, M. H. (2006). Camera trapping of snow leopards for the photo capture rate and population size in the Muzat Valley of Tianshan Mountains. Acta Theriologica Sinica, 52(4), 788–793.
Abstract: The main purpose of this work was to study the use of infrared trapping cameras to estimate snow leopard Uncia uncia population size in a specific study area. This is the first time a study of this nature has taken place in China. During 71 days of field work, a total of 36 cameras were set up in five different small vales of the Muzat Valley adjacent to the Tomur Nature Reserve in Xinjiang Province, E80ø35' – 81ø00' and N42ø00' – 42ø10', elevation 2'300 – 3'000 m, from 18th October to 27th December 2005. We expended approximately 2094 trap days and nights total (c. 50'256 hours). At least 32 pictures of snow leopards, 22 pictures of other wild species (e.g. chukor, wild pig, ibex, red fox, cape hare) and 72 pictures of livestock were taken by the passive Cam Trakker (CT) train monitor in about 16 points of the Muzat Valley. The movement distance of snow leopard was 3-10 km/day. And the capture rate or photographic rate of snow leopard was 1.53%. Meanwhile, 20 transects were run and 31 feces sample were collected. According to 32 photos, photographic rate and sign survey after snowing on the spot, were about 5-8 individuals of snow leopards in the research area, and the minimum density of snow leopard in Muzat Valley was 2.0 – 3.2 individuals/100 km2. We observed the behavior of ibex for 77.3 hours, and found about 20 groups and a total of approximately 264 ibexes in the research area.
Keywords: behavior; camera trapping; capture; China; Chinese; density; feces; fox; ibex; infrared trapping cameras; livestock; photo; population; research; reserve; sign; snow leopard; survey; Tianshan Mountains; Tomur; transect; Uncia uncia; Xinjiang
|
Schaller, G. B., Hong, L., Talipu, J., & Mingjiang, R. Q. (1989). The Snow Leopard in Xinjiang, China (Vol. winter). Seattle: Islt. |
Suryawanshi, K. R., Bhatnagar, Y., & Mishra, C. (2009). Why should a grazer browse? Livestock impact on winter resource use by bharal Pseudois nayaur
. Oecologia, , 1–10.
Abstract: Many mammalian herbivores show a temporal diet variation between graminoid-dominated and browse dominated diets. We determined the causes of such a diet shift and its implications for conservation of a medium sized ungulate-the bharal Pseudois nayaur. Past studies show that the bharal diet is dominated by graminoids (>80%) during summer, but the contribution of graminoids declines to about 50% in winter. We tested the predictions generated by two alternative hypotheses explaining the decline: low graminoid availability during winter causes bharal to include browse in their diet; bharal include browse, with relatively higher nutritional quality, in their diet to compensate for the poor quality of graminoids during winter. We measured winter graminoid availability in areas with no livestock grazing, areas with relatively moderate livestock grazing, and those with intense livestock grazing pressures. The chemical composition of plants contributing to the bharal diet was analysed. The bharal diet was quantiWed through signs of feeding on vegetation at feeding locations. Population structures of bharal populations were recorded using a total count method. Graminoid availability was highest in areas without livestock grazing, followed by areas with moderate and intense livestock grazing. The bharal diet was dominated by graminoids (73%) in areas with highest graminoid availability. Graminoid contribution to the bharal diet declined monotonically (50, 36%) with a decline in graminoid availability. Bharal young to female ratio was 3 times higher in areas with high graminoid availability than areas with low graminoid availability. The composition of the bharal winter diet was governed predominantly by the availability of graminoids in the rangelands. Our results suggest that bharal include more browse in their diet during winter due to competition from livestock for graminoids. Since livestock grazing reduces graminoid availability, creation of livestock-free areas is necessary for the conservation of grazing species such as the bharal and its predators including the endangered snow leopard in the Trans-Himalaya.
Keywords: browse; livestock; impact; winter; resource; use; bharal; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; diet; variation; diets; conservation; Media; study; decline; areas; area; grazing; Pressure; plants; plant; sign; feeding; location; population; structure; populations; using; young; Female; times; High; Competition; species; predators; predator; endangered; snow; snow leopard; snow-leopard; leopard; trans-himalaya; transhimalaya
|
ud Din, J. (2008). Assessing the Status of Snow Leopard in Torkhow Valley, District Chitral, Pakistan: Final Technical Report.
Abstract: This study was aimed at assessing the status of Snow leopard, its major prey base, and the extent of human-Snow leopard conflict and major threats to the wildlife in north Chitral (Torkhow valley) Pakistan. Snow leopard occurrence was conformed through sign transect surveys i.e. SLIMS. Based on the data collected the number of Snow leopards in this survey block (1022 Kmý) is estimated to be 2-3 animals. Comparing this estimate with the available data from other parts of the district the population of snow leopard in Chitral district was count to be 36 animals. Livestock depredation reports collected from the area reflect the existence of human-snow leopard conflict and 138 cases were recorded affecting 102 families (in a period of eight years, 2001-2008). Ungulates (Himalayan Ibex) rut season surveys were conducted in coordination with NWFP Wildlife department. A total of 429 animals were counted using direct count (point method) surveys. Other snow leopard prey species recorded include marmot, hare, and game birds. Signs of other carnivores i.e. wolf, jackal, and fox were also noticed. Major threats to the survival of wildlife especially snow leopard reckoned include retaliatory killing (Shooting, Poisoning), poaching, loss of natural prey, habitat degradation (over grazing, fodder and fuel wood collection), lack of awareness, and over population. GIS map of the study area was developed highlighting the area searched for Snow leopard and its prey species. Capacity of the Wildlife Department staff was built in conducting SLIMS and ungulate surveys through class room and on field training. Awareness regarding the importance of wildlife conservation was highlighted to the students, teachers and general community through lectures and distribution of resource materials developed by WWF-Pakistan.
Keywords: status; snow; snow leopard; snow-leopard; leopard; valley; chitral; Pakistan; Report; study; prey; Base; conflict; threats; threat; wildlife; sign; transect; surveys; survey; Slims; Data; number; snow leopards; snow-leopards; leopards; Animals; Animal; population; livestock; livestock depredation; livestock-depredation; depredation; area; Case; ungulates; ungulate; Himalayan; himalayan ibex; ibex; rut; using; prey species; prey-species; species; marmot; game; birds; carnivores; carnivore; wolf; wolves; jackal; fox; survival; retaliatory; retaliatory killing; retaliatory-killing; killing; poisoning; poaching; loss; habitat; habitat degradation; habitat-degradation; degradation; grazing; collection; awareness; Gis; map; staff; field; training; conservation; community; distribution; resource; project; network; program
|
Wolf, M., & Ale, S. (2009). Signs at the Top: Habitat Features Influencing Snow Leopard Uncia Uncia Activity in Sagarmatha National Park, Nepal. Journal of Mammalogy, 90(3), 604–611.
Abstract: We used logistic regression to examine factors that affected the spatial distribution of sign (scrapes, feces, footprints, spray or scent marks, and rubbing sites) in a newly reestablished population of snow leopards (Uncia uncia) in Sagarmatha (Mount Everest) National Park, Nepal. Our results indicate that terrain and human activity were the most important factors determining the spatial distribution of leopard activity, whereas presence of their major prey species (Himalayan tahr [Hemitragus jemlahicus]) had only a moderate effect. This suggests that localities at which these animals are active represent a trade-off between suitable habitat and avoidance of potential risk from anthropogenic origins. However, the influence of prey presence was likely underestimated because of the methodology used, and likely weighed in the trade-off as well.
|
Xu, F., Ming, M., Yin, S. -jing, Chundawat R.S., Marden, & Nui, Y. (2006). Preliminary Study on the Habitat Selection of Uncia uncia (Vol. 23).
Abstract: Uncia uncia is one of the rare large species on the brink of extinction in Felidae in the world, and inhabit only the Central Asian mountains. It is said that there are currently only 4500-7300 Uncia uncia surviving. During the period from September 2004 to July 2005, the habitat selection of Uncia uncia was investigated in some mountains in Xinjiang, including the eastern Tianshan Mountains, Beita Mountains, Altay Mounts and Mount Tumor National Nature Reserve. In several months of fieldwork, we got 171 sign samples of Uncia uncia and 123 random samples in total. Five habitat features, i.e., the elevation, topographic features, vegetation type, grazing status and ruggedness, are selected to compare the difference of selectivity of the Uncia uncia habitat selection. The Chi-square goodness-of-fit test and the binomial test are used to check the significance of Uncia uncia habitat selection, and the principal component analysis is used to find the primary factors in in the selection. The result s are as follows : (1) Uncia uncia selected all kinds of the habitat types , especially the elevation , topography , vegetation types and ruggedness ; (2) Ruggedness and the vegetation types are the preliminary factors for the habitat selection. Topography is the secondary factor ; (3) Uncia uncia prefer to inhabit in the rugged habitat s with moderate shrubberies , and they also like to leave signs in valley bottoms rather than hillsides.
Keywords: study; habitat; Habitat selection; selection; uncia; Uncia uncia; Uncia-uncia; Chinese; research; large; species; extinction; Felidae; central; mountains; mountain; Xinjiang; Tianshan Mountains; Altay; national; nature; reserve; fieldwork; sign; grazing; status; Test; analysis; primary; factor; topography; valley
|
Xu, F., Ming, M., Yin, S. -jing, & Mardan. (2005). Snow Leopard Survey in Tumor Nature Reserve, Xingjiang (Vol. 24).
Abstract: Snow leopard survey was conducted in Oct-Nov 2004 at Tumor National Natural Reserve, Xinjiang, China. Because of its special living style, the snow leopard is difficult to observe by sight. Signs left by snow leopard become a good index to prove the existance of the big cat. There are mainly five kinds of signs, footprints, fectes, claw rakes and urine spray. From them we can know the distribution, probably population and habitat selection of snow leopard. This time in Tumor we investigated 5 difference places: Pochenzi in Mozat River area, Boxidun in Little Kuzbay River area, Yinyer in Tomur River area, Kurgan and Taglak in Quiong Tailan River area. 42 transects were run in this trip and a total of 57 signs found. Among them, footprints amounted to 71.9%, scrapes 21.1%, and feces 7.0%. The results showed that the big cat existed in Yinyer, Kurgan and Taglak areas and liked to select their habitat in the valley and didn't like to live in barren areas.
|