Home | << 1 >> |
Berenstein, F. (1984). The snow leopard. Fusion in an Elaborated Delusional Fantasy. Am J Psychoanal, 44(4), 377–397.
Keywords: Adolescence; Case; Report; Countertransference; Psychology; Divorce; Fantasy; Gender; Identity; Human; Male; Parent-Child; Relations; Professional-Patient; Psychoanalytic Interpretation; Psychoanalytic; therapy; Psychosexual; development; Transference; parent; child; professional; patient; interpretation; browse; 340
|
Fox, J. L. (1989). A review of the status and ecology of the snow leopard (Panthera uncia). |
Graham, L. H., Goodrowe, K. L., Raeside, J. I., & Liptrap, R. M. (1995). Non-invasive monitoring of ovarian function in several felid species by measurement of fecal estradiol-17-beta and progestins. Zoo Biology, 14(3), 223–237.
Abstract: An extraction and assay procedure to measure fecal estradiol-17-beta and progestin concentrations in several cat species was developed and validated for use for noninvasive monitoring of ovarian function. Fecal samples were collected over a range of 3-20 months from female tigers (three), lions (three), snow leopards (three), cheetahs (two), caracals (two), and domestic cats (five). Samples were extracted with 90% methanol, lipids removed with petroleum ether, and the estradiol and progestins in the methanol measured by radioimmunoassay (RIA). High Performance Liquid Chromatography (HPLC) fractionation and subsequent RIA of the fractions indicated that the estradiol-17-beta antiserum cross-reacted primarily with estradiol-17-beta in the feces of lions and tigers and was assumed to be specific for estradiol-17-beta in the feces of other species as well. However, there were several immunoreactive compounds, presumably progesterone metabolites, excreted in the feces which varied both quantitatively and qualitatively among species. The behavior of tigers, lions, cheetahs, and caracals was visually monitored during the collection period and frequency of sexual behaviors was positively correlated with increases in fecal estradiol in all species observed. The mean fecal estradiol-17-beta peaks were as follows: tigers, 128.0 +- 13.1; lions, 186.0 +- 14.8; snow leopards, 136.7 +- 15.9; cheetahs, 140.9 +- 9.0; caracals, 24.5 +- 4.0; and domestic cats 158.9 +- 19.3 ng/gm. Fecal progestin concentrations rose significantly (P lt 0,001) only after breeding or during pregnancy and were as follows: tigers, 5.6 +- 0.6; lions, 1.9 +- 0.1; cheetahs, 8.4 +- 1.1; and caracals, 2.4 +- 0.4 mu-g/gm. Fecal progestins were elevated for one-half to two-thirds of the gestation length during presumed pseudopregnancy but remained elevated throughout successful pregnancies. These results suggest that ovarian function can be monitored noninvasively in the family Felidae by the measurement of fecal estradiol-17-beta and progestin concentrations.
Keywords: Artificial-Breeding-Program; captive-management; Estradiol-17beta; Pregnancy; Progesterone; Progestin; sexual-behavior; genetics; zoo; medicine; veterinary; snow-leopard; feces; fecal-analysis; snow leopard; artificial; breeding; program; captive; management; Estradiol; 17beta; sexual; behavior; browse; snow; leopard; fecal; analysis; 1390
|
Schmidt, A. M., Hess, D. L., Schmidt, M. J., Smith, R. C., & Lewis, C. R. (1988). Serum concentrations of oestradiol and progesterone, and sexual behaviour during the normal oestrous cycle in the leopard (Panthera pardus) (Vol. 82).
Abstract: Three mature nulliparous female leopards were studied for 5 years. During three separate 6-month periods serum oestradiol and progesterone concentrations were measured at weekly intervals. Oestradiol was elevated over 21 pg/ml for 54 weeks during these 3 periods, and 36 oestradiol peaks (65\m=.\8\m=+-\6\m=.\3pg/ml (mean \m=+-\s.e.m.), range 21\p=n-\172pg/ml) were identified. Daily frequency of feline reproductive behaviours averaged over each week increased from 1\m=.\9\m=+-\0\m=.\2(n = 93) during weeks with low serum oestradiol concentrations (<21 pg/ml) to 5\m=.\3\m=+-\0\m=.\6(n = 54) during weeks when serum oestradiol concentrations (>21 pg/ml) were high. Increased serum progesterone concentrations (13\p=n-\98n/gml) were observed on 5 occasions in 2 leopards housed together. These presumptive luteal phases lasted from 1 to 5 weeks. Baseline progesterone values were 1\m=.\6\m=+-\0\m=.\4 ng/m(nl= 131). No progesterone increments were observed in isolated animals, and serum concentrations remained at baseline levels. These limited observations suggest that female leopards do not require intromission to induce ovulation and luteal function. The average interval between oestradiol peaks for cycles with no progesterone increment was 3\m=.\4weeks (range 1\p=n-\6weeks). The interval for the 3 complete cycles associated with elevated progesterone concentrations was 7\m=.\3weeks. Analysis of sexual behaviours over the 5-year study period revealed no evidence of seasonality in these
captive leopards. Keywords: captive; Ovulation; Panthera pardus; Progesterone; Serum; sexual behaviour
|
Singh, N. J. (2008). Animal – Habitat relationships in high altitude rangelands. Norway: University of Tromsø.
Abstract: This study conducted in the high altitude rangelands of Indian Transhimalaya, deals with basic questions regarding the ecology of an endangered species, the wildsheep Tibetan argali (Ovis ammon hodgsoni) and applied issues related to its conservation and potential conflict with the local nomadic pastoralists. The basic questions on ecology are aimed at delineating the habitat and resource selection processes, identifying factors causing sexual segregation and efficient surveying and sampling. The applied aspect focuses on the changing face of pastoralism and the potential impacts of modernising livestock husbandry on argali.
Overall, the study provides a general framework towards the understanding of argali-habitat relationships at different spatio-temporal scales. The spatial determinant associated with altitude in the area, predicts argali habitat and resource selection in this relatively homogenous landscape. These determine the range of other topographic variables and forage characteristics selected by argali. The selection of feeding patches in the selected range of altitude and topography is mainly characterised by their greenness and the quality of plant groups. Adjusting to changing forage quality, argali display an opportunistic feeding strategy, selecting grasses in early spring and switching to forbs later in summer. Nevertheless, the habitat selection process did not appear to differ among the sexes to drive sexual segregation. There was, however, strong segregation among the sexes as well as between lactating and non lactating females. The reasons for segregation appeared to be predominantly social, but driven ultimately by predation and concomitantly by resources. The habitat selection information was used to design a stratified random sampling strategy that led to i) a significant reduction in survey effort in sampling these sparsely distributed species and ii) reduction in sampling bias. The applied aspect of the study outlines and evaluates the dramatic changes in the nomadic pastoralism that have occurred in the past five decades in the study area. These have led to a loss of pastures (-25 to -33%) of the nomads, consequent readjustment in traditional patterns of pasture use, intensified grazing pressures (25 to 70%) and rangeland degradation in the area. Such changes may have serious consequences on the survival of local wildlife, as tested with a study of the effects on argali of livestock presence and resource exploitation. Hence, a successful conservation and recovery strategy should focus on: minimising the impacts of livestock on argali, identifying the factors affecting the persistence of the current populations, increasing local sub populations of this species to prevent extinction due to stochastic events, prevent loss of genetic diversity and excessive fragmentation and thus ensuring gene flow. Ecological Niche Factor Analyses (ENFA), bias-reduced logistic regression and Fuzzy correspondence analyses (FCA) were used to answer habitat and resource selection questions. A sexual segregation and aggregation statistic (SSAS) was used to estimate the components of sexual segregation and test segregation. SSAS combined with canonical correspondence analyses (CCA) allowed the estimation of segregation based on habitat variables. Logistic regression models were formulated to estimate models on which the stratified random sampling strategy was based. The 9 Animal – Habitat relationships in high altitude rangelands overall study also included surveys, interviews and literature reviews to understand the nomads’ movement and pasture use patterns of their livestock. Kernel density estimations (KDE) were used to estimate extent of range overlaps between livestock and argali. |