Home | << 1 2 >> |
Klubnikin, K., Annett, C., Cherkasova, M., Shishin, M., & Fotieva, I. (2000). The sacred and the scientific: Traditional ecological knowledge in Siberian River conservation. Ecological-Applications., 10(5), 1296–1306.
Abstract: The Katun River originates in the steppe of the Altai Mountains in Siberia. One of the major headwaters of the Ob River, the Katun is considered central to the culture of the indigenous Altaians. The Katun Valley contains large numbers of important cultural sites, dating from the Neolithic and representing some of the earliest human settlement in Russia. Modern-day Altaians still observe traditional ceremonies honoring the river and springs throughout the watershed and utilize traditional ecological knowledge in their management of the land and water resources. Russian and international scientists have identified the Altai Mountains as a region of high plant diversity and endemism, and as important habitat for endangered species such as the snow leopard. The Katun River itself contains species of threatened and endangered fishes, and its headwaters are part of the unusual Mongolian ichthyofaunal province that is characterized by high levels of endemism. The same regions are considered by the Altaian people to be special or sacred and are recognized by Western scientists as having great value for conservation. During the era of perestroika, a hydroelectric dam was to be built on the Katun. The large dam, a vestige of the earlier Soviet plan for the Project of the Century, would have devastated significant agricultural, ecological, recreational, and cultural resources. The indigenous Altaian people would have lost much of their sacred and cultural landscape. The Katun dam project united indigenous people, well-known Siberian writers, and scientists in protest, which became so heated that it engaged the international community, with lasting effects on Russian society. The magnitude of the protest illustrates the importance of the Altai Mountain region to all of Russia. The active participation of indigenous Altaians reflected their traditional willingness to take action against political decisions that negatively impacted the environmental, cultural, and religious values of their homeland. Their involvement also reflected the new wave of awareness under perestroika that underscored a greater respect and autonomy for indigenous peoples in Russia.
Keywords: endangered-species; Human; Hominidae; Altaians; plant; Plantae; snow-leopard; Felidae; endemism; hydroelectric-dam; land-management; perestroika; species-diversity; traditional-ecological-knowledge; water-resource-management; snow leopard; browse; hydroelectric; dam; endangered; species; land; management; diversity; species diversity; traditional; ecological.; knowledge; water; resource; 30
|
Lovari, S., Minder, I., Ferretti, F., Mucci, N., Randi, E., Pellizzi, B. (2013). Common and snow leopards share prey, but not habitats: competition avoidance by large predators. Journal of Zoology, 291, 127–135.
Abstract: Resource exploitation and behavioural interference underlie competition among
carnivores. Competition is reduced by specializing on different prey and/or spatiotemporal separation, usually leading to different food habits. We predicted that two closely related species of large cats, the endangered snow leopard and the near-threatened common leopard, living in sympatry, would coexist through habitat separation and exploitation of different prey species. In central Himalaya, we assessed (2006–2010) habitat and diet overlap between these carnivores. The snow leopard used grassland and shrubland, whereas the common leopard selected forest. Contrary to our prediction, snow leopard and common leopard preyed upon similar wild (Himalayan tahr, musk deer) and domestic species (Bos spp., dogs). Dietary overlap between snow leopard and common leopard was 69% (yearly), 76% (colder months) and 60% (warmer months). Thus, habitat separation should be the result of other factors, most likely avoidance of interspecific aggression. Habitat separation may not always lead to the use of different prey. Avoidance of interspecific aggression, rather than exploitation of different resources, could allow the coexistence of potentially competing large predators. |
Mishra, C., Madhusudan, M. D., & Datta, A. (2006). Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs (Vol. 40).
Abstract: The high altitudes of Arunachal Pradesh,India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carnivores, 10 ungulates and 5 primates) were recorded, of which 13 are categorized as Endangered or Vulnerable on the IUCN Red List. One species of primate, the Arunachal macaque Macaca munzala, is new to science and the Chinese goral Nemorhaedus caudatus is a new addition to the ungulate fauna of the Indian subcontinent. We documented peoples' dependence on natural resources for grazing and extraction of timber and medicinal plants. The region's mammals are threatened by widespread hunting. The snow leopard Uncia uncia and dhole Cuon alpinus are also persecuted in retaliation for livestock depredation. The tiger Panthera tigris, earlier reported from the lower valleys, is now apparently extinct there, and range reductions over the last two decades are reported for bharal Pseudois nayaur and musk deer Moschus sp.. Based on mammal species richness, extent of high altitude habitat, and levels of anthropogenic disturbance, we identified a potential site for the creation of Arunachal's first high altitude wildlife reserve (815 km2). Community-based efforts that provide incentives for conservation-friendly practices could work in this area, and conservation awareness programmes are required, not just amongst the local communities and schools but for politicians, bureaucrats and the army.
Keywords: anthropogenic; area; Arunachal; assessment; awareness; bharal; biodiversity; carnivore; carnivores; community; community-based; conservation; deer; depredation; dhole; endangered; extinct; fauna; goral; grazing; habitat; habitats; High; Himalaya; hunting; incentives; India; indian; Iucn; leopard; livestock; livestock-depredation; livestock depredation; local; mammals; musk; musk-deer; nayaur; panthera; people; peoples; plant; plants; potential; Pseudois; Pseudois-nayaur; pseudois nayaur; range; recent; region; Report; reserve; resource; schools; snow; snow-leopard; snow leopard; species; survey; surveys; threat; threatened; threats; tiger; uncia; Uncia-uncia; Uncia uncia; ungulate; ungulates; valley; wildlife; work; Panthera-tigris; tigris
|
Mishra, C., Van Wieren S., Ketner, P., Heitkonig, I., & Prins H. (2004). Competition between domestic livestock and wild bharal Pseudois nayaur in the Indian Trans-Himalaya. Journal of Animal Ecology, 73, 344–354.
Abstract: 1. The issue of competition between livestock and wild herbivores has remained contentious. We studied the diets and population structures of the mountain ungulate bharal Pseudois nayaur and seven species of livestock to evaluate whether or not they compete for forage. The study was conducted in the high altitude Spiti Valley, Indian Trans-Himalaya.
2. We compared resource (forage) availability and bharal population structures between rangelands differing in livestock density. Forage availability was estimated by clipping the standing graminoid biomass in sample plots. Livestock and bharal population structures were quantified through annual censuses. Seasonal diets of livestock were studied by direct observations, while those of bharal were quantified through feeding signs on vegetation. 3. We found that livestock grazing causes a significant reduction in the standing crop of forage. Graminoid availability per unit livestock biomass was three times greater in a moderately grazed rangeland compared with an intensively grazed one. 4. There was considerable diet overlap among the herbivore species. In summer, bharal, yak Bos grunniens, horse Equus caballus, cow Bos indicus, and dzomo (yak-cow hybrids) fed predominantly on graminoids, while donkey E. asinus, sheep Ovis aries, and goat Capra hircus, consumed both graminoids and herbs. The summer diet of bharal was a subset of the diets of three livestock species. In winter, depleted graminoid availability caused bharal, yak and horse to consume relatively more herbs, while the remaining livestock species fed predominantly on graminoids. Diet overlap was less in winter but, in both seasons, all important forage species in the bharal diet were consumed in substantial amounts by one or more species of livestock. 5. Comparison of the population structures of bharal between two rangelands differing in livestock density by c. 30% yielded evidence of resource competition. In the intensively grazed rangeland, bharal density was 63% lower, and bharal population showed poorer performance (lower young : adult female ratios). 6.Synthesis and applications High diet overlap between livestock and bharal, together with density-dependent forage limitation, results in resource competition and a decline in bharal density. Under the present conditions of high livestock density and supplemental feeding, restricting livestock numbers and creating livestockfree areas are necessary measures for conserving Trans-Himalayan wild herbivores. Mediating competitive effects on bharal through supplemental feeding is not a feasible option. |
Namgail, T., Fox, J., & Bhatnagar, Y. V. (2004). Habitat segregation between sympatric Tibetan argali Ovis ammon hodgsoni and blue sheep Pseudois nayaur in the Indian Trans-Himalaya. Journal of Zoology, 262, 57–63.
Abstract: Tibetan argali Ovis ammon hodgsoni and blue sheep Pseudois nayaur have almost completely overlapping distributions encompassing most of the Tibetan plateau and its margins. Such a sympatric distribution of related species with similar ecological requirements implies that there is some degree of resource partitioning. This may be accomplished on the basis of habitat and/or diet separation. This study evaluated such ecological separation on the basis of physical habitat partitioning by these two sympatric ungulates in Hemis High Altitude National Park, Ladakh, India, in an area where the argali established a small new population in 1978. Such separation was tested for
on the basis of expected difference between the species in their proximity to cliffs, associated with species-specific anti-predator behaviour. Tibetan argali selected habitats away from cliffs while blue sheep selected habitats close to cliffs. Blue sheep also selected steep slopes whereas argali selected gentle slopes. The two species did not differ in their use of habitats in terms of elevation. They did, however, differ in their use of plant communities; blue sheep selected sub-shrub and grass-dominated communities whilst argali selected forb-dominated communities. We suggest that the two species coexist in this site as a result of the differential use of habitat associated with their species-specific anti-predator strategies. |
Raghavan, B., Bhatnagar, Y., & Qureshi, Q. (2003). Interactions between livestock and Ladakh urial (Ovis vignei vignei); final report.
Abstract: The Ladakh urial (Ovis vignei vignei) is a highly endangered animal (IUCN Red List 2000) listed in the Appendix 1 of CITES and Schedule 1 of the Indian Wildlife Protection Act 1972. Its numbers had been reduced to a few hundred individuals in the 1960s and 70s through hunting for trophies and meat (Fox et al. 1991, Mallon 1983, Chundawat and Qureshi 1999, IUCN Red List 2000). However, with the protection bestowed by the IWPA 1972, and resultant decrease in hunting, the population seems to have shown a marginal increase to about 1000-1500 individuals in its range in Ladakh (Chundawat and Qureshi 1999, IUCN Red List 2000). Although the species had in the past, been able to coexist with the predominantly Buddhist society of Ladakh, the recent increase in the population of both humans and their livestock has placed immense pressures on its habitat (Shackleton 1997, Chundawat and Qureshi 1999, Raghavan and Bhatnagar 2003). This is especially important considering that the Ladakh urial habitat coincides with the areas of maximum human activity in terms of settlements, agriculture, pastoralism and development, in Ladakh (Fox et al. 1991, Chundawat and Qureshi 1999, Raghavan and Bhatnagar 2003). Increased developmental activities such as construction of roads, dams, and military bases in these areas have also increased the access to their habitat. This has consequently made the species more vulnerable to the threats of poaching and habitat destruction (Fox et al. 1991, Chundawat and Qureshi 1999, Raghavan and Bhatnagar 2002). Pressure from increased livestock grazing is one of the major threats faced by the species today (Shackleton 1997, Fox et al. 1991, Mallon 1983, IUCN Red List 2000 Chundawat and Qureshi 1999, Raghavan and Bhatnagar 2003). In the impoverished habitat provided by the Trans-Himalayas, there is great competition for the scarce resources between various animal species surviving here (Fox 1996, Mishra 2001). The presence of livestock intensifies this competition and can either force the species out of its niche (competitive exclusion) by displacing it from that area or resource, or lead to partitioning of resources between the species, spatially or temporally, for coexistence (Begon et al. 1986, Gause 1934).
Keywords: Interactions; interaction; livestock; Ladakh; urial; ovis; endangered; Animal; Iucn; 2000; Cites; indian; wildlife; protection; number; 1960; 70; hunting; meat; fox; Chundawat; population; range; species; recent; humans; Human; Pressure; habitat; areas; area; human activity; activity; activities; agriculture; pastoralism; development; dam; Base; threats; threat; poaching; grazing; trans-himalaya; transhimalaya; Competition; resource; presence; India; project; International; international snow leopard trust; International-Snow-Leopard-Trust; snow; snow leopard; snow-leopard; leopard; trust; program
|
Rude, K. (1985). Aiding the elusive snow leopard. Endangered Species Technical Bulletin Reprint, 2(3), 1–6. |
Shrestha, B. (2008). Prey Abundance and Prey Selection by Snow Leopard (uncia uncia) in the Sagarmatha (Mt. Everest) National Park, Nepal.
Abstract: Predators have significant ecological impacts on the region's prey-predator dynamic and community structure through their numbers and prey selection. During April-December 2007, I conducted a research in Sagarmatha (Mt. Everest) National Park (SNP) to: i) explore population status and density of wild prey species; Himalayan tahr, musk deer and game birds, ii) investigate diet of the snow leopard and to estimate prey selection by snow leopard, iii) identify the pattern of livestock depredation by snow leopard, its mitigation, and raise awareness through outreach program, and identify the challenge and opportunities on conservation snow leopard and its co-existence with wild ungulates and the human using the areas of the SNP. Methodology of my research included vantage points and regular monitoring from trails for Himalayan tahr, fixed line transect with belt drive method for musk deer and game birds, and microscopic hair identification in snow leopard's scat to investigate diet of snow leopard and to estimate prey selection. Based on available evidence and witness accounts of snow leopard attack on livestock, the patterns of livestock depredation were assessed. I obtained 201 sighting of Himalayan tahr (1760 individuals) and estimated 293 populations in post-parturient period (April-June), 394 in birth period (July -October) and 195 November- December) in rutting period. In average, ratio of male to females was ranged from 0.34 to 0.79 and ratio of kid to female was 0.21-0.35, and yearling to kid was 0.21- 0.47. The encounter rate for musk deer was 1.06 and density was 17.28/km2. For Himalayan monal, the encounter rate was 2.14 and density was 35.66/km2. I obtained 12 sighting of snow cock comprising 69 individual in Gokyo. The ratio of male to female was 1.18 and young to female was 2.18. Twelve species (8 species of wild and 4 species of domestic livestock) were identified in the 120 snow leopard scats examined. In average, snow leopard predated most frequently on Himalayan tahr and it was detected in 26.5% relative frequency of occurrence while occurred in 36.66% of all scats, then it was followed by musk deer (19.87%), yak (12.65%), cow (12.04%), dog (10.24%), unidentified mammal (3.61%), woolly hare (3.01%), rat sp. (2.4%), unidentified bird sp. (1.8%), pika (1.2%), and shrew (0.6%) (Table 5.8 ). Wild species were present in 58.99% of scats whereas domestic livestock with dog were present in 40.95% of scats. Snow leopard predated most frequently on wildlife species in three seasons; spring (61.62%), autumn (61.11%) and winter (65.51%), and most frequently on domestic species including dog in summer season (54.54%). In term of relative biomass consumed, in average, Himalayan tahr was the most important prey species contributed 26.27% of the biomass consumed. This was followed by yak (22.13%), cow (21.06%), musk deer (11.32%), horse (10.53%), wooly hare (1.09%), rat (0.29%), pika (0.14%) and shrew (0.07%). In average, domestic livestock including dog were contributed more biomass in the diet of snow leopard comprising 60.8% of the biomass consumed whilst the wild life species comprising 39.19%. The annual prey consumption by a snow leopard (based on 2 kg/day) was estimated to be three Himalayan tahr, seven musk deer, five wooly hare, four rat sp., two pika, one shrew and four livestock. In the present study, the highest frequency of attack was found during April to June and lowest to July to November. The day of rainy and cloudy was the more vulnerable to livestock depredation. Snow leopard attacks occurred were the highest at near escape cover such as shrub land and cliff. Both predation pressure on tahr and that on livestock suggest that the development of effective conservation strategies for two threatened species (predator and prey) depends on resolving conflicts between people and predators. Recently, direct control of free – ranging livestock, good husbandry and compensation to shepherds may reduce snow leopard – human conflict. In long term solution, the reintroduction of blue sheep at the higher altitudes could also “buffer” predation on livestock.
Keywords: project; snow; snow leopard; snow-leopard; leopard; network; conservation; program; prey; abundance; selection; uncia; Uncia uncia; Uncia-uncia; Sagarmatha; national; national park; National-park; park; Nepal; resource; predators; predator; ecological; impact; region; community; structure; number; research; population; status; density; densities; wild; prey species; prey-species; species; Himalayan; tahr; musk; musk-deer; deer; game; birds; diet; livestock; livestock depredation; livestock-depredation; depredation; awareness; co-existence; ungulates; ungulate; Human; using; areas; area; monitoring; transect; Hair; identification; scat; attack; patterns; sighting; 1760; populations; birth; Male; Female; young; domestic; domestic livestock; 120; scats; yak; Dog; pika; wildlife; Seasons; winter; horse; study; cover; land; predation; Pressure; development; strategy; threatened; threatened species; threatened-species; conflicts; conflict; people; control; husbandry; compensation; reintroduction; blue; blue sheep; blue-sheep; sheep; free ranging
|
Shrestha, R., & Wegge, P. (2008). Wild sheep and livestock in Nepal Trans-Himalaya: coexistence or competition? Environmental Conservation, 32(2), 125–136.
Abstract: Excessive grazing by livestock is claimed to displace wild ungulates in the Trans-Himalaya. This study compares the seasonal diets and habitat use of sympatric wild naur Pseudois nayaur and domestic goat Capra hircus, sheep Ovis aries and free-ranging yak Bos grunniens in north Nepal and analyses their overlap both within and across seasons. Alpinemeadow and the legumes Oxytropis and Chesneya were critical resources for all animal groups. High overlap occurred cross-seasonally when smallstock (sheep and goats) in summer used the spring and autumn ranges of naur. Relatively high total ungulate biomass (3028 kg km-2) and low recruitment of naur (56 young per 100 adult females in autumn) suggested interspecific competition. The spatio-temporal heterogeneity in composition and phenology of food plants across the steep gradient of altitude, together with rotational grazing, appears to indirectly facilitate coexistence of naur and smallstock. However, owing to high crossseasonal (inter-seasonal) overlaps, competition is likely to occur between these two groups at high stocking densities. Within seasons, naur overlapped more with free-ranging yak than with smallstock. As their habitat use and diets were most similar in winter, when both fed extensively on the same species of shrubs, naur was most likely to compete with yak during that season.
|
Singh, N. J. (2008). Animal – Habitat relationships in high altitude rangelands. Norway: University of Tromsø.
Abstract: This study conducted in the high altitude rangelands of Indian Transhimalaya, deals with basic questions regarding the ecology of an endangered species, the wildsheep Tibetan argali (Ovis ammon hodgsoni) and applied issues related to its conservation and potential conflict with the local nomadic pastoralists. The basic questions on ecology are aimed at delineating the habitat and resource selection processes, identifying factors causing sexual segregation and efficient surveying and sampling. The applied aspect focuses on the changing face of pastoralism and the potential impacts of modernising livestock husbandry on argali.
Overall, the study provides a general framework towards the understanding of argali-habitat relationships at different spatio-temporal scales. The spatial determinant associated with altitude in the area, predicts argali habitat and resource selection in this relatively homogenous landscape. These determine the range of other topographic variables and forage characteristics selected by argali. The selection of feeding patches in the selected range of altitude and topography is mainly characterised by their greenness and the quality of plant groups. Adjusting to changing forage quality, argali display an opportunistic feeding strategy, selecting grasses in early spring and switching to forbs later in summer. Nevertheless, the habitat selection process did not appear to differ among the sexes to drive sexual segregation. There was, however, strong segregation among the sexes as well as between lactating and non lactating females. The reasons for segregation appeared to be predominantly social, but driven ultimately by predation and concomitantly by resources. The habitat selection information was used to design a stratified random sampling strategy that led to i) a significant reduction in survey effort in sampling these sparsely distributed species and ii) reduction in sampling bias. The applied aspect of the study outlines and evaluates the dramatic changes in the nomadic pastoralism that have occurred in the past five decades in the study area. These have led to a loss of pastures (-25 to -33%) of the nomads, consequent readjustment in traditional patterns of pasture use, intensified grazing pressures (25 to 70%) and rangeland degradation in the area. Such changes may have serious consequences on the survival of local wildlife, as tested with a study of the effects on argali of livestock presence and resource exploitation. Hence, a successful conservation and recovery strategy should focus on: minimising the impacts of livestock on argali, identifying the factors affecting the persistence of the current populations, increasing local sub populations of this species to prevent extinction due to stochastic events, prevent loss of genetic diversity and excessive fragmentation and thus ensuring gene flow. Ecological Niche Factor Analyses (ENFA), bias-reduced logistic regression and Fuzzy correspondence analyses (FCA) were used to answer habitat and resource selection questions. A sexual segregation and aggregation statistic (SSAS) was used to estimate the components of sexual segregation and test segregation. SSAS combined with canonical correspondence analyses (CCA) allowed the estimation of segregation based on habitat variables. Logistic regression models were formulated to estimate models on which the stratified random sampling strategy was based. The 9 Animal – Habitat relationships in high altitude rangelands overall study also included surveys, interviews and literature reviews to understand the nomads’ movement and pasture use patterns of their livestock. Kernel density estimations (KDE) were used to estimate extent of range overlaps between livestock and argali. |