Home | << 1 2 >> |
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; region; Nepal; Report; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; 1960; endangered; Sagarmatha; High; Himalaya; tourism; impact; establishment; national; national park; National-park; park; 1980; area; Tibet; surveys; survey; status; Cats; cat; prey; research; project; sign; transects; transect; length; valley; Response; hunting; recovery; Himalayan; tahr; density; densities; range; pugmarks; sighting; 60; study; population; predators; predator; structure; prey species; prey-species; species; populations; mortality; effects; predation; population dynamics
|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively. Keywords: Report; mortality; blue; blue sheep; blue-sheep; sheep; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; Dhorpatan; hunting; reserve; Nepal; biodiversity; research; training; snow; snow leopard; snow-leopard; leopard; conservation; program; population; Population-Density; density; densities; change; Sex; study; area; High; poaching; Pressure; reducing; number; predators; predator; poison; wolf; wolves; canis; Canis-lupus; lupus; wild; wild boar; prey; prey species; prey-species; species; scats; scat; value; fox; cover; deer; diet; leopards; pika; snow leopards; snow-leopards; soil; Relationship
|
Blomqvist, L. (2008). The status of the snow leopard in the EEP – program in 2007. In L. Blomqvist (Ed.), International Pedigree Book of Snow Leopards (Vol. 9, pp. 20–24). Helsinki: Helsinki Zoo. |
Dyikanova, C. (2004). A public awareness outreach programme on Snow Leopards for the Kyrgyz Republic, Final Report.
Abstract: The principle goal of the project was to raise awareness of local people, staff of frontier posts,
customs and foreign military base on snow leopard, and its conservation. In the framework of the project the following steps were to be executed: A) To disseminate printing materials: a booklet, poster, card and calendar. b) To publish articles on snow leopard ecology and conservation issues and threats in Kyrgyzstan regional newspapers (Issyk-Kul, Osh, and Chui areas) C) To hold follow-up meeting with target groups D) To evaluate project results Keywords: project; awareness; local; local people; people; staff; Base; snow; snow leopard; snow-leopard; leopard; conservation; ecology; threats; threat; Kyrgyzstan; regional; areas; area; public; snow leopards; snow-leopards; leopards; Kyrgyz; Kyrgyz-Republic; republic; Report; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; community
|
Freeman, H. (1996). What's Happening in Mongolia (Vol. xiv). Seattle: Islt. |
Graham, L. H., Goodrowe, K. L., Raeside, J. I., & Liptrap, R. M. (1995). Non-invasive monitoring of ovarian function in several felid species by measurement of fecal estradiol-17-beta and progestins. Zoo Biology, 14(3), 223–237.
Abstract: An extraction and assay procedure to measure fecal estradiol-17-beta and progestin concentrations in several cat species was developed and validated for use for noninvasive monitoring of ovarian function. Fecal samples were collected over a range of 3-20 months from female tigers (three), lions (three), snow leopards (three), cheetahs (two), caracals (two), and domestic cats (five). Samples were extracted with 90% methanol, lipids removed with petroleum ether, and the estradiol and progestins in the methanol measured by radioimmunoassay (RIA). High Performance Liquid Chromatography (HPLC) fractionation and subsequent RIA of the fractions indicated that the estradiol-17-beta antiserum cross-reacted primarily with estradiol-17-beta in the feces of lions and tigers and was assumed to be specific for estradiol-17-beta in the feces of other species as well. However, there were several immunoreactive compounds, presumably progesterone metabolites, excreted in the feces which varied both quantitatively and qualitatively among species. The behavior of tigers, lions, cheetahs, and caracals was visually monitored during the collection period and frequency of sexual behaviors was positively correlated with increases in fecal estradiol in all species observed. The mean fecal estradiol-17-beta peaks were as follows: tigers, 128.0 +- 13.1; lions, 186.0 +- 14.8; snow leopards, 136.7 +- 15.9; cheetahs, 140.9 +- 9.0; caracals, 24.5 +- 4.0; and domestic cats 158.9 +- 19.3 ng/gm. Fecal progestin concentrations rose significantly (P lt 0,001) only after breeding or during pregnancy and were as follows: tigers, 5.6 +- 0.6; lions, 1.9 +- 0.1; cheetahs, 8.4 +- 1.1; and caracals, 2.4 +- 0.4 mu-g/gm. Fecal progestins were elevated for one-half to two-thirds of the gestation length during presumed pseudopregnancy but remained elevated throughout successful pregnancies. These results suggest that ovarian function can be monitored noninvasively in the family Felidae by the measurement of fecal estradiol-17-beta and progestin concentrations.
Keywords: Artificial-Breeding-Program; captive-management; Estradiol-17beta; Pregnancy; Progesterone; Progestin; sexual-behavior; genetics; zoo; medicine; veterinary; snow-leopard; feces; fecal-analysis; snow leopard; artificial; breeding; program; captive; management; Estradiol; 17beta; sexual; behavior; browse; snow; leopard; fecal; analysis; 1390
|
Gundersen, S., & Jackson, R. (1999). Snow Leopard in Nepal (S. Gundersen, Ed.). |
International Snow Leopard Trust. (1999). Snow Leopard News. Seattle, WA: Islt. |
International Snow Leopard Trust. (2000). Snow Leopard News Spring 2000. Seattle, Wa: Islt.
Keywords: Rutherford; Freeman; Morse; Jackson; Hillard; Natural-Partnerships-Program; Pakistan; Islt; Slims; training; Chitrol-Gol; parks; preserves; reserves; protected-areas; surveys; Hemis; Conflict-Resolution-Workshop; conflict; herders; leh; Jammu; Kashmir; Ladakh; corrals; predator; prey; livestock; depradation; human-wildlife-conflict; Uzbekistan; Gissar; Peace-Corps; Mongolia; Macne; fiction; populations; browse; 4390
|
International Snow Leopard Trust. (2001). Snow Leopard News Spring 2001. Seattle, WA: Islt.
Keywords: Annual-Appeals-Fund; conservation-programs; populations; Kyrgyz-Republic; Soviet-Union; China; India; Mongolia; Pakistan; Charudutt; incentive; Woodland-Park-Zoo; cub; Death; veterinary; medicine; Bayarjargal; raffle; Dorothy-McLean; volunteers; poaching; hunting; pelts; furs; bones; herders; killing; livestock; browse; 4360
|
International Snow Leopard Trust. (2001). Snow Leopard News Summer 2001. Seattle, WA: Islt.
Keywords: Islt; Woodland-Park-Zoo; seattle; Snow-leoaprd-Summit; Slss; threats; conservation; donation; field-study; surveys; Pakistan; Kyrgastan; Kyrgyz-Republic; India; research; staff; expansion; programs; education; herders; interviews; funding; travel; livestock; browse; 4350
|
Jack, R. (2008). DNA Testing and GPS positioning of snow leopard (Panthera uncia) genetic material in the Khunjerab National Park Northern Areas, Pakistan.
Abstract: The protection of Snow Leopards in the remote and economically disadvantaged Northern Areas of Pakistan needs local people equipped with the skills to gather and present information on the number and range of individual animals in their area. It is important for the success of a conservation campaign that the people living in the area are engaged in the conservation process. Snow Leopards are elusive and range through inhospitable terrain so direct study is difficult. Consequently the major goals for this project were twofold, to gather information on snow leopard distribution in this area and to train local university students and conservation management professionals in the techniques used for locating snow leopards without the need to capture or even see the animals. This project pioneered the use of DNA testing of field samples collected in Pakistan to determine the distribution of snow leopards and to attempt to identify individuals. These were collected in and around that country's most northerly national park, the Kunjurab National Park, which sits on the Pakistan China border. Though the Northern Areas is not a well developed part of Pakistan, it does possess a number of institutions that can work together to strengthen snow leopard conservation. The first of these is a newly established University with students ready to be trained in the skills needed. Secondly WWF-Pakistan has an office in the main town and a state of the art GIS laboratory in Lahore and already works closely with the Forest Department who manage the national park. All three institutions worked together in this project with WWF providing GIS expertise, the FD rangers, and the university students carrying out the laboratory work. In addition in the course of the project the University of the Punjab in Lahore also joined the effort, providing laboratory facilities for the students. As a result of this project maps have been produced showing the location of snow leopards in
two areas. Preliminary DNA evidence indicates that there is more than one animal in this relatively small area, but the greatest achievement of this project is the training and experience gained by the local students. For one student this has been life changing. Due to the opportunities provided by this study the student, Nelofar gained significant scientific training and as a consequence she is now working as a lecturer and research officer for the Center for Integrated Mountain Research, New Campus University of the Punjab, Lahore Pakistan Keywords: project; snow; snow leopard; snow-leopard; leopard; network; conservation; program; Dna; Gps; panthera; panthera uncia; Panthera-uncia; uncia; Khunjerab; Khunjerab-National-Park; national; national park; National-park; park; areas; area; Pakistan; protection; snow leopards; snow-leopards; leopards; local; local people; people; information; number; range; Animals; Animal; study; distribution; management; professional; techniques; capture; use; field; country; China; border; work; art; Gis; Forest; manage; Wwf; maps; map; location; training; research; mountain
|
Jackson, R. (2000). Linking Snow Leopard Conservation and People-Wildlife Conflict Resolution, Summary of a multi-country project aimed at developing grass-roots measures to protect the endangered snow leopard from herder retribution. Cat News, 33, 12–15.
Keywords: livestock-depredation; livestock; pastoralists; herders; Pakistan; Nepal; Tibet; Mongolia; India; protected-areas; parks; reserves; refuge; snow-leopard-incentive-program; economics; tourism; pens; corrals; enclosures; trapping; poisoning; killing; cubs; dens; retribution; behavior; predator; prey; Qomolangma; habitat; feces; fecal-analysis; compensation; Dogs; guard-dogs; religion; conservation; browse; depredation; snow; leopard; incentive; program; fecal; analysis; guard; Dog; 4000
|
Jackson, R. (2004). Pakistan's Community-based Trophy Hunting Programs and Their Relationship to Snow Leopard Conservation.
Abstract: In June-July 2004, the Snow Leopard Conservancy (SLC) recently conducted field visits to three important snow leopard sites in Pakistan's Northern Areas: Hushey and Skoyo villages in Baltistan and the Khunjerab Village Organization (KVO) in Gojal. The purpose was to launch environmentally appropriate small-scale, village-based conservation and depredation alleviation initiatives aimed at protecting snow leopards, prey species, their habitats and associated mountain biodiversity, while benefiting humans at the same time.
Keywords: Pakistan; community-based; hunting; programs; program; Relationship; snow; snow leopard; snow-leopard; leopard; conservation; network
|
Jain, N., Wangchuk, R., & Jackson, R. (2003). An Assessment of CBT and Homestay Sites in Spiti District, Himachal Pradesh.
Abstract: The survey described in this report builds upon prior CBT activities undertaken by The Mountain Institute (TMI) in partnership with the Snow Leopard Conservancy (SLC) in Ladakh, supported by a grant from UNESCO (with co-financing from SLC). Under the evolving concept of “Himalayan Homestays”, initially developed and tested in Ladakh, it is proposed that activities be expanded to selected states in India in a strategic and effective way. Himalayan Homestays are part of a larger integrated program to link snow leopard conservation with local livelihoods in Asia.
Keywords: assessment; Himachal; himachal pradesh; Himachal-Pradesh; United; Organization; survey; Report; activities; activity; mountain; Tmi; snow; snow leopard; snow-leopard; Snow Leopard Conservancy; leopard; Ladakh; States; India; Himalayan; program; conservation; local; livelihood; asia
|
Jiang, Z. (2005). Snow leopards in the Dulan International Hunting Ground, Qinghai, China.
Abstract: From March to May, 2006œªwe conducted extensive snow leopard surveys in the Burhanbuda Mountain Kunlun Mountains, Qinghai Province, China. 32 linear transect of 5~15 km each, which running through each vegetation type, were surveyed within the study area. A total of 72 traces of snow leopard were found along 4 transects (12.5% of total transects). The traces included pug marks or footprints, scrapes and urine marks. We estimated the average density of wild ungulates in the region was 2.88ñ0.35 individuals km-2(n=29). We emplaced 16 auto2 trigger cameras in different environments and eight photos of snow leopard were shot by four cameras and the capture rate of snow leopard was 71.4%. The minimum snow leopard population size in the Burhanbuda Mountain was two, because two snow leopards were phototrapped by different cameras at almost same time. Simultaneously, the cameras also shot 63 photos of other wild animals, including five photos are unidentified wild animals, and 20 photos of livestock. We evaluated the human attitudes towards snow leopard by interviewing with 27 Tibetan householders of 30 householders live in the study area. We propose to establish a nature reserve for protecting and managing snow leopards in the region. Snow leopard (Uncia uncia) is considered as a unique species because it lives above the snow line, it is endemic to alpines in Central Asia, inhabiting in 12 countries across Central Asia (Fox, 1992). Snow leopard ranges in alpine areas in Qinghai, Xinjiang, Inner Mongolia, Tibet, Gansu and Sichuan in western China (Liao, 1985, 1986; Zhou, 1987; Ma et al., 2002; Jiang & Xu, 2006). The total population and habitat of snow leopards in China are estimated to be 2,000~2,500 individuals and 1,824,316 km2, only 5% of which is under the protection of nature reserves. The cat's current range is fragmented (Zou & Zheng, 2003). Due to strong human persecutions, populations of snow leopards decreased significantly since the end of the 20th century. Thus, the
snow leopards are under the protection of international and domestic laws. From March to May, 2006, we conducted two field surveys in Zhiyu Village, Dulan County in Burhanbuda Mountain, Kunlun Mountains, China to determine the population, distribution and survival status of snow leopards in the area. The aim of the study was to provide ecologic data for snow leopard conservation. Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; International; hunting; Qinghai; China; project; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; surveys; survey; mountains; mountain; province; transect; study; area; transects; pug; pug marks; pug-marks; marks; scrapes; scrape; density; densities; wild; ungulates; ungulate; region; camera; environment; photo; capture; population; population size; population-size; Animals; Animal; 20; livestock; Human; attitudes; attitude; tibetan; 30; nature; reserve; uncia; Uncia uncia; Uncia-uncia; species; snow line; snow-line; endemic; alpine; central; Central Asia; asia; countries; country; fox; range; areas; Xinjiang; inner; Inner-Mongolia; Mongolia; Tibet; gansu; Sichuan; habitat; protection; nature reserves; reserves; cat; populations; domestic; laws; law; field; field surveys; field survey; field-surveys; field-survey; Kunlun; distribution; survival; status; Data; conservation
|
Khan, A. (2004). Snow Leopard Occurrence in Mankial Valley, Swat: Final report.
Abstract: Mankial is a sub-valley of the Swat Kohistan. Temperate ecosystem of the valley is intact to a greater extent, which provides habitat to a variety of species of plants, animals and birds. Snow leopard is reported from the valley. To confirm its occurrence, the HUJRA (Holistic Understanding for Justified Research and Action), conducted the study titled “Snow Leopard Survey in Mankial Valley, district Swat, NWFP”. The author provided technical support, while ISLT (The International Snow Leopard Trust) funded the project under its small grants program. The World Wide Fund for Nature-Pakistan (WWF-Pakistan) and the Mankial Community Organization (MCO) facilitated surveys under the project. Surveys revealed that Snow leopard visits parts of the Mankial valley in winter months. Information from the local community shows that Snow leopard remains in the Serai (an off-shoot of the Mankial Valley) from early winter to early spring. Intensive surveys of the prime snow leopard winter habitat in the valley found several snow leopard signs including pugmarks, feces, and scrapes. The study also found occurrence of prey species through indirect evidence though. However, information from the local community confirmed that in the recent past there was a good population of markhor in the valley, which is now reduced to less than 50, mostly due to hunting and habitat disturbance. Hunting is part of the local culture and lifestyle. During winter months hunting pressure is low, as most of the local community migrates to warmer plain areas than Mankial Valley. However, those who live in the area lop oak branches for feeding their livestock and cut trees for burning, in addition to hunting prey species of snow leopard. This has resulted in stunted oak vegetation in most of the lower reaches of the valley and decline of the markhor population.
Keywords: snow; snow leopard; snow-leopard; leopard; valley; Report; project; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; ecosystem; habitat; species; plants; plant; Animals; Animal; birds; research; action; study; survey; Support; Islt; community; Organization; surveys; winter; information; local; sign; pugmarks; feces; scrapes; scrape; prey; prey species; prey-species; recent; population; markhor; hunting; Culture; Pressure; areas; area; feeding; livestock; burning; decline
|
Kitchener, S. L., Meritt, & Rosenthal, M. (1975). Observations on the breeding and husbandry of snow leopards, Panthera uncia. Int.Zoo Yearbook, 15, 212–217.
Abstract: Describes adult care and breeding biology, and the care, growth, and mortality factors of young snow leopards in a successful breeding program in the Lincon Park Zoo, Chicago, Illinois.
|
Kyes, R., & Chalise, M. K. (2003). Snow Leopard Study Summary 2003, Langtang National Park, Nepal. |
Kyes, R., & Chalise, M. K. (2005). Assessing the Status of the Snow Leopard Population in Langtang National Park, Nepal.
Abstract: This project is part of an ongoing snow leopard study established in 2003 with support from the ISLT. The study involves a multifaceted approach designed to provide important baseline data on the status of the snow leopard population in Langtang National Park (LNP), Nepal and to generate long-term support and commitment to the conservation of snow leopards in the park. The specific aims include: 1) conducting a population survey of the snow leopards in LNP, focusing on distribution and abundance; 2) assessing the status of prey species populations in the park; and 3) providing educational outreach programs on snow leopard conservation for local school children (K-8) living in the park. During the 2004 study period, snow leopard signs were observed (including pugmarks and scats) although somewhat fewer than in 2003. Similarly, the average herd size of the snow leopards' primary prey species in LNP (the Himalayan thar) was a bit lower than in 2003. There is speculation that the thar populations and the snow leopards may be moving to more remotes areas of the park perhaps in response to increasing pressure from domestic livestock grazing. This possibility is being addressed during the 2005 study period.
Keywords: status; snow; snow leopard; snow-leopard; leopard; population; Langtang; national; national park; National-park; park; Nepal; project; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; biodiversity; research; study; Support; Islt; approach; Data; conservation; snow leopards; snow-leopards; leopards; survey; distribution; abundance; prey; prey species; prey-species; species; populations; programs; local; sign; pugmarks; scats; scat; primary; Himalayan; areas; area; Response; Pressure; domestic; domestic livestock; livestock; grazing
|
McCarthy, T., & Allen, P. (1999). Knitting for snow leopards. Cat News, 30, 24–25.
Abstract: The authors describe an innovative conservation program for the endangered snow leopard. A program was established in which herding families in Mongolia knit scarves, gloves, and hats from camel, sheep, and cashmere wool for sale as eco-friendly products. The program increases family incomes, brings in revenue for conservation programs, and educates the herders on the leopards. klf.
Keywords: conservation-programs; endangered; threatened-species; human-dimensions; management; conservation; asia; Mongolia; herder; herding; herders; browse; threatened; species; programs; Human; dimensions.; 1040
|
Mishra, C., Allen, P., McCarthy, T., Madhusudan, M. D., Agvaantserengiin, B., & Prins H. (2003). The role of incentive programs in conserving the snow leopard (Vol. 17).
Abstract: Pastoralists and their livestock share much of the habitat of the snow leopard (Uncia uncia) across south and central Asia. The levels of livestock predation by the snow leopard and other carnivores are high, and retaliatory killing by the herders is a direct threat to carnivore populations. Depletion of wild prey by poaching and competition from livestock also poses an indirect threat to the region's carnivores. Conservationists working in these underdeveloped areas that face serious economic damage from livestock losses have turned to incentive programs to motivate local communities to protect carnivores. We describe a pilot incentive program in India that aims to offset losses due to livestock predation and to enhance wild prey density by creating livestock-free areas on common land. We also describe how income generation from handicrafts in Mongolia is helping curtail poaching and retaliatory killing of snow leopards. However, initiatives to offset the costs of living with carnivores and to make conservation beneficial to affected people have thus far been small, isolated, and heavily subsidized. Making these initiatives more comprehensive, expanding their coverage, and internalizing their costs are future challenged for the conservation of large carnivores such as the snow leopard.
|
Mishra, C., Young, J. C., Fiechter, M., Rutherford, B., Redpath, S. M. (2017). Building partnerships with communities for biodiversity conservation: lessons from Asian mountains. Journal of Applied Ecology, , 1–9.
Abstract: Applied ecology lies at the intersection of human societies and natural systems. Consequently, applied ecologists are constantly challenged as to how best to use ecological knowledge to influence the management of ecosystems (Habel et al. 2013). As Hulme (2011) has pointed out, to do so effectively we must leave our ivory towers and engage with stakeholders. This engagement is especially important and challenging in areas of the world where poverty, weak institutions and poor governance structures conspire to limit the ability of local communities to contribute to biodiversity conservation. These communities often bear disproportionate costs in the form of curtailed access to natural resources, ecosystem services, and developmental
programmes, and also suffer wildlife-caused damage, including injuries or loss of human life, and economic and psychological impacts (Madhusudan & Mishra 2003). It is well-recognized that conservation efforts in large parts of the world historically have been perceived to be discriminatory by local people (Mishra 2016). The need for engagement with local communities is therefore embedded in the 2020 Aichi biodiversity targets and is widely thought to be critical to the success of conservation efforts. However, although the need for engagement is clear, as ecologists and practitioners we often have little formal training in how we should engage with local communities and how we can recognize the pitfalls and opportunities provided by developing genuine partnerships. The practical challenges of achieving effective engagement are considerable (Agrawal & Gibson 1999; Waylen et al. 2010, 2013), and such forays are fraught with difficulties and ethical considerations (Chan et al. 2007). When they are done badly, conservation interventions can damage relationships and trust, and lead to serious injustice to local people and setbacks for ecological outcomes (Duffy 2010). Much has been written on knowledge exchange and participatory research approaches (e.g. Reed et al. 2014 and references therein). This Practitioner’s Perspective seeks to focus on the next logical step: the elements that practitioners and researchers need to consider when engaging with communities to effect conservation. Engagement around the management of protected areas has been discussed and formalized (e.g. Dudley 2008). Considerable literature has also emerged, particularly from Africa, on the use and co-management of natural resources, commonly referred to as community-based natural resource management or CBNRM (e.g. Fabricius 2004; Roe, Nelson & Sandbrook 2009; Child & Barnes 2010). There have been attempts to draw general principles for CBNRM (e.g. Thakadu 2005; Gruber 2010). In the related field of community-based conservation, however, while there have been efforts to draw lessons (e.g. Berkes 2004), little exists in terms of frameworks or guidelines for effectively working with local communities to effect biodiversity conservation in multi-use landscapes (Mishra 2016). The eight principles for community-based conservation outlined here (Fig. 1) build on ideas developed in fields as diverse as applied ecology, conservation and natural resource management, community health, social psychology, rural development, negotiation theory, and ethics (see Mishra 2016). They have been developed, challenged and tested through 20 years of community experience andour own research on the endangered snow leopard Panthera uncia and its mountain ecosystems, in South and Central Asia. We suspect that with contextual adaptations, their relevance for applied ecologists and practitioners may be universal. |
Namgail, T. (2004). Interactions between argali and livestock, Gya-Miru Wildlife Sanctuary, Ladakh, India, Final Project Report.
Abstract: Livestock production is the major land-use in Ladakh region of the Indian Trans-Himalaya, and is a crucial sector that drives the region's economy (Anon, 2002). Animal products like meat and milk provide protein to the diet of people, while products like wool and pashmina (soft fibre of goats) find their way to the international market. Such high utility of livestock and the recent socio-economic changes in the region have caused an increase in livestock population (Rawat and Adhikari, 2002; Anon. 2002), which, if continue apace, may increase grazing pressure and deteriorate pasture conditions. Thus, there is an urgent need to assess the impact of such escalation in livestock population on the regions wildlife. Although, competitive interaction between wildlife and livestock has been studied elsewhere in the Trans-Himalaya (Bhatnagar et al., 2000; Mishra, 2001; Bagchi et al., 2002), knowledge on this aspect in the Ladakh region is very rudimentary. The rangelands of Ladakh are characterised by low primary productivity (Chundawat & Rawat, 1994), and the wild herbivores are likely to compete with the burgeoning livestock on these impoverished rangelands (Mishra et al., 2002). Thus, given that the area supports a diverse wild ungulate assemblage of eight species (Fox et al., 1991b), and an increasing livestock population (Rawat and Adhikari, 2002), the nature of interaction between wildlife and livestock needs to be assessed. During this project, we primarily evaluated the influence of domestic sheep and goat grazing on the habitat use of Tibetan argali Ovis ammon hodgsoni in a prospective wildlife reserve in Ladakh.
Keywords: Interactions; interaction; argali; livestock; Gya-Miru; wildlife; sanctuary; sanctuaries; Ladakh; India; project; Report; land-use; land use; region; indian; trans-himalaya; transhimalaya; economy; Animal; products; meat; diet; people; wool; goats; goat; International; High; recent; change; population; grazing; Pressure; pasture; impact; 2000; knowledge; primary; Chundawat; wild; area; Support; ungulate; species; fox; nature; domestic; sheep; habitat; habitat use; use; tibetan; Tibetan argali; ovis; Ovis ammon hodgsoni; ammon; reserve; international snow leopard trust; International-Snow-Leopard-Trust; snow; snow leopard; snow-leopard; leopard; trust; program
|
Namgay, K. (2007). Snow Leopard and Prey Population Conservation in Bhutan.
Abstract: Snow leopard conservation work in Bhutan dates back to 1999 and 2000 when the International Snow Leopard Trust-in collaboration with the Royal Government of Bhutan and World Wildlife Fund-initiated a training workshop. More than 30 government staff were trained in SLIMS survey techniques. As a part of the training exercise, a preliminary survey on snow leopard was also carried out using the SLIMS methods in Jigme Dorji Wangchuck National Park. Based on the survey results, we estimated there was a population of 100 snow leopards in the wild and 10,000 km2 of habitat. In 2005, World Wildlife Fund (WWF) organized the WWF/South Asia Regional Workshop on Snow leopard Conservation in Bhutan. Both regional (Bhutan, India, China, Nepal and Pakistan) and international experts revisited the snow leopard programs and developed a work plan for the overall conservation of the snow leopard in the region. This led to WWF's Regional Snow leopard Conservation Strategy. WWF is pleased to submit our final report to the International Snow Leopard Trust on the oneyear, $8,000 grant in support of Snow Leopard and Prey Population Conservation in Bhutan. With the support of the Snow Leopard Trust, we have made great strides towards achieving our goal for this project: To determine the current status of snow leopard and ungulate prey populations in prime snow leopard habitats. Major accomplishments and activities completed thanks to the generous support of the International Snow Leopard Trust include:
Signed of a Terms of Reference between Royal Government, International Snow Leopard Trust – India, World Wildlife Fund and International Snow Leopard Trust -US; Developed a joint revised project work plan; and Purchased basic field supplies and equipment needed for the surveys planned. Keywords: 2000; 30; activities; activity; asia; Bhutan; China; conservation; dates; Dorji; field; government; habitat; habitats; India; International; International-Snow-Leopard-Trust; international snow leopard trust; Jigme; Jigme-Dorji; leopard; leopards; methods; national; National-park; national park; Nepal; Pakistan; park; plan; population; populations; prey; program; programs; project; region; regional; Report; Slims; snow; snow-leopard; snow-leopards; snow leopard; snow leopards; staff; status; strategy; Support; survey; surveys; techniques; training; trust; ungulate; us; using; wild; wildlife; work; workshop; world-wildlife-fund; world wildlife fund; Wwf
|