|
Abramov V.K. (1974). Ecological basis of the conservation of large predators in USSR (Vol. Vol.I.).
Abstract: Problems of conservation of large predators (Felis tigris L., Panthera pardus L., Felis uncia Schreb., Acinonyx jubatus Schreb., Hyaena h¢…†n… L., Cuon alpinus Pall., Ursus maritimus Phipps, U.tibetanus Cuv.) inhabiting territory of USSR are discussed.
|
|
|
Aizin B.M. (1969). Siberian ibex Capra sibirica Pall.
Abstract: It describes status of ibex in Kyrgyzstan, its distribution, behavioral patterns, enemies and competitors, etc. The enemies of ibex are snow leopard and wolf. All year round snow leopard preys on ibex its main food object and, therefore, should there be ibexes, snow leopards would be somewhere around. In winter, a considerable number of ibex dies from wolves. Sometimes dogs prey on ibex, too. Golden eagles and bearded vultures prey on young ibexes. However, poachers remain the most dangerous enemy.
|
|
|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
|
|
|
Ale, S., & Brown, J. (2007). The contingencies of group size and vigilance (Vol. 9).
Abstract: Background: Predation risk declines non-linearly with one's own vigilance and the vigilance of others in the group (the 'many-eyes' effect). Furthermore, as group size increases, the individual's risk of predation may decline through dilution with more potential victims, but may increase if larger groups attract more predators. These are known, respectively, as the dilution effect and the attraction effect.
Assumptions: Feeding animals use vigilance to trade-off food and safety. Net feeding rate declines linearly with vigilance.
Question: How do the many-eyes, dilution, and attraction effects interact to influence the relationship between group size and vigilance behaviour?
Mathematical methods: We use game theory and the fitness-generating function to determine the ESS level of vigilance of an individual within a group.
Predictions: Vigilance decreases with group size as a consequence of the many-eyes and dilution effects but increases with group size as a consequence of the attraction effect, when they act independent of each other. Their synergetic effects on vigilance depend upon the relative strengths of each and their interactions. Regardless, the influence of other factors on vigilance – such as encounter rate with predators, predator lethality, marginal value of energy, and value of vigilance – decline with group size.
|
|
|
Ale, S., & Whelan, C. (2008). Reappraisal of the role of big, fierce predators.
Abstract: The suggestion in the early 20th century that top predators were a necessary component of ecosystems because they hold herbivore populations in check and promote biodiversity was at Wrst accepted and then largely rejected. With the advent of Evolutionary Ecology and a more full appreciation of direct and indirect effects of top predators, this role of top predators is again gaining acceptance. The previous views were predicated upon lethal effects of predators but largely overlooked their non-lethal effects. We suggest that
conceptual advances coupled with an increased use of experiments have convincingly demonstrated that prey experience costs that transcend the obvious cost of death. Prey species use adaptive behaviours to avoid predators, and these behaviours are not cost-free. With predation risk, prey species greatly restrict their use of available habitats and consumption of available food resources. Effects of top predators consequently cascade down to the trophic levels below them. Top predators, the biggies, are thus both the targets of and the means for conservation at the landscape scale.
|
|
|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively.
|
|
|
Baidavletov R.J. (2002). Large predators of the Kazakhstan Altai and their importance for hunting industry.
Abstract: Fauna of large predatory mammals in the Kazakhstan Altai is represented by five species: wolf, bear, glutton, lynx, and snow leopard. Snow leopard inhabits the Sarymsakty and Tarbagai ridges and South Altai. This species is observed to regularly penetrate into the Kutun and Kurchum ridges. Its habitat covers an area of 1,800 sq. km, its population being 14-16 animals. The population density is 0.7 1.0 animals per 100 sq. km. A hunting area of a female animal with two cubs is 45 85 sq. km; a male 120 sq. km. Snow leopard main preys on ibex (41.1 percent), roe-deer (31.0 percent), and moral (13.8 percent); in summer on gray marmot (28.6 percent). Snow leopard is also known to prey on hares, birds, argali, and elks.
|
|
|
Egorov O.V. (1955). Enemies, infections, parasites and mortality rate of ibex (Vol. Vol. 42.).
Abstract: Reasons for ibex and argali mortality from natural enemies, parasites, infections, accidents, and hunters are analyzed. Snow leopard is one of the most dangerous enemies of ibex and argali, preying equally on both young and mature animals (mostly males). Snow leopard feeds upon ibex all year round. Unlike wolf, snow leopard would never kill several animals at a time, but only one selected victim. The food remains left by these predators are different in terms of the skull gnawing. Nasal bones and eye-sockets on the skull of ibex killed by snow leopard remain undamaged, while wolf gnaws off nasal part of the skull, breaks eye-sockets, eats lower jaw, widens occipital hole and pulls out brains. Snow leopard leaves large pieces of skin around the skeleton of the victim, whereas wolf tears it to shreds or eats up fully. Sometimes parts of the victim left by snow leopard are eaten by wolf. It is easy to mix the remains of snow leopard's or griffon vulture's food. The remains differ in skin being turned inside out rather than torn to large pieces.
|
|
|
Esipov A.V. (2002). Distribution and Numbers of the Siberian Ibex in the Hissar Nature Reserve, Uzbekistan.
Abstract: It describes distribution and number of ibex in four parts of the Hissar nature reserve in Uzbekistan. The total number of ibex is estimated to be 1,500 animals. The natural enemies of ibex are snow leopard, wolf, and lynx. Data about ibex's food, seasonal migrations, and threats are given. Decreasing forage reserve and poaching are considered as the most serious threats. A buffer zone is suggested to be established in the areas adjacent to Tajikistan and the Surkhandarya region of Uzbekistan.
|
|
|
Fedosenko A.K. (1979). Relationship between the predators and wild ungulates in North Tien Shan and Jungar Alatau.
Abstract: Ibex is a main prey for snow leopards. The role of marmots and snow cocks in snow leopard's consumption is negligent. It can prey on morals in the fir-wood. A case of snow leopard's attacking a dog is also known.
|
|
|
Jamtsho, Y., Katel, O. (2019). Livestock depredation by snow leopard and Tibetan wolf: Implications for herders� livelihoods in Wangchuck Centennial National Park, Bhutan. Springer Open, (9:1), 1–10.
Abstract: Human-wildlife conflict (HWC) is a serious problem in many parts of the world, and Bhutan�s Wangchuck Centennial
National Park (WCNP) is no exception. Located in the remote alpine areas of the eastern Himalaya, wildlife species
such as snow leopard (SL) and Tibetan wolf (TW) are reported to kill livestock in many parts of the Park. Such
depredation is believed to have affected the livelihoods of high-altitude herding communities, resulting in conflicts
between them. This study provides analysis on the extent of livestock depredation by wildlife predators such as SL
and TW and examines its implications for the livelihoods of herding communities of Choekhortoe and Dhur regions
of WCNP. Using semi-structured questionnaires, all herders (n = 38) in the study area were interviewed. The questions
pertained to livestock population, frequency of depredation and income lost due to depredation in the last five years
from 2012 to 2016. This study recorded 2,815 livestock heads in the study area, with an average herd size of 74.1 stock.
The average herd size holding showed a decreasing trend over the years, and one of the reasons cited by the herders
is depredation by SL and TW and other predators. This loss equated to an average annual financial loss equivalent to
10.2% (US$837) of their total per capita cash income. Such losses have resulted in negative impacts on herders�
livelihood; e.g. six herders (2012-2016) even stopped rearing livestock and resorted to an alternate source of cash
income. The livestock intensification programmes, including pasture improvement through allowing controlled
burning, and financial compensation, may be some potential short-term solutions to reduce conflict between herders
and predators. Issuing permits for cordyceps (Ophiocordyceps sinensis) collection only to the herders and instilling the
sense of stewardship to highland herders may be one of the long-term solutions.
|
|
|
Lydekker, R. (1907). The Game Animals of India, Burma, Malaya, and Tibet.. London: Rowland Ward.
|
|
|
Meklenburtsev R.N. (1949). About ecology of ibex in Pamir (Vol. Vol. 28, edition 5.).
Abstract: Ibex is distributed all over the Pamir mountains, inhabiting rocks and canyons and ascending up to 5,500 m above sea level. In summer, ibex mostly feeds upon sedge and cereals, in winter wormwood. It keeps in herds containing 15 to 30 animals. The coupling period is December; kids being born at the beginning of June. The most dangerous predators are snow leopard and wolf. Ibex is a main commercial game species.
|
|
|
Plakhov K.N. (2002). Menzbier's marmot in Kazakhstan.
Abstract: Menzbier's marmot is preyed on by snow leopard, bear, wolf, fox, bearded vulture, golden eagle, black vulture, and raven. A harm caused by the predators to the Kazakhstan population of marmot made up 2,000 3,000 in 2001.
|
|
|
Plyaskin V.E. (1984). About a methodology of predatory mammals study under the conditions of mountain nature reserves.
Abstract: Methods of studying large predatory mammals in mountain nature reserves are described. The following was recommended in terms of snow leopard: methods of plotting encounter places based on oral questioning of local communities; counts on the sites of traces (1.5 x 1.5 m) with mellow flat soil with odor lure in the center; obtaining indirect data by analyzing data concerning numbers and herds of ibex.
|
|
|
Poyarkov, A. D., & Subbotin, A. E. (2002). Strategic Priorities and the System of Measures for Snow Leopard Conservation in Russia.. Islt: Islt.
|
|
|
Prakash, I. (1985). Asian predators of livestock. Parasites, pests and predators.World animal science, B2, 405–410.
Abstract: Outlines the distribution, status and predatory behaviour on livestock of Chinese alligator Alligator sinensis, gharial Gavialis gangeticus and several species of Crocodylus and Python; and of wolf Canis lupus, Asiatic jackal C. aureus, dhole (Indian wild dog) Cuon alpinus, brown bear Ursus arctos, Asiatic black bear Selenarctos thibetanus, striped hyaena Hyaena hyaena, clouded leopard Neofelis nebulosa, leopard (panther) Panthera pardus, tiger P. tigris, lion P. leo, snow leopard P. uncia, other Felidae and Viverridae. -P.J.Jarvis
|
|
|
Razmakhnin V.E. (1977). Siberian wild ibex.
Abstract: It provides a detailed description of biology, distribution, geographic variability, behavior, and locomotion features of ibex in the USSR. Its population was defined as 100,000 animals, main enemies being wolf, snow leopard, and golden eagle. Wolf mainly preys on ibex at the end of winter; old males, weakened during the heat mostly becoming a prey. Snow leopards prey on ibexes all year round. Golden eagles mostly prey on young ibexes.
|
|
|
Sapozhnikov G.N. (1976). Wild sheep in Tajikistan.
Abstract: The monograph provides data concerning taxonomy, morphology, and age variability of wild sheep. There described distribution, number, population composition, behavioral patterns, reproduction, predators and parasites. Besides, a matter of conservation and sustainable use of the species is discussed. Together with wolf, snow leopard is called an enemy of O. o. vignei and argali (O. o. polii).
|
|
|
Schaller, G. B., Hong, L., Talipu, J., & Mingjiang, R. Q. (1988). The snow leopard in Xinjiang, China. Oryx, 22(4), 197–204.
Abstract: Snow leopards live in the mountains of Central Asia, their range stretching from Afganastan to Lake Baikal in Eastern Tibet. They are endangered throughout their range, being hunted as predators of mains livestock and for their skin. Much of the snow leopards range lies in China, but not enough is known about its staus there for effective conservation. As part of a project to assess China's high altitude wildlife resources the authors conducted a survey in Xinjiang- a vast arid region of deserts and mountains. Although the snow leopard and other wildlife have declined steeply in Xinjiang in recent decades, the cta still persists and one area has the potential to become one of the best refuges for the species in its entire range. Its future in XInjiang, howevere, depends on well protected reserves, enforcement of regulations against killing the animal, and proper managemnt of the prey species.
|
|
|
Scheber. (1975). Snow Leopard in the south part of Gobi-Altai mountain range.
Abstract: Accorfing to the information from Gurvan its rumored that the snow leopards grow in number and many times they attacked the livestock entering into the domestic area causing damage, we investigated theGurvan Tes sumon of Umnogobi aimag and also Noyon sumon todisplay the reserve review and spreading area of snow leopard from 22 of December of 1975 to 10th of January of 1976.
|
|
|
Shrestha, B. (2008). Prey Abundance and Prey Selection by Snow Leopard (uncia uncia) in the Sagarmatha (Mt. Everest) National Park, Nepal.
Abstract: Predators have significant ecological impacts on the region's prey-predator dynamic and community structure through their numbers and prey selection. During April-December 2007, I conducted a research in Sagarmatha (Mt. Everest) National Park (SNP) to: i) explore population status and density of wild prey species; Himalayan tahr, musk deer and game birds, ii) investigate diet of the snow leopard and to estimate prey selection by snow leopard, iii) identify the pattern of livestock depredation by snow leopard, its mitigation, and raise awareness through outreach program, and identify the challenge and opportunities on conservation snow leopard and its co-existence with wild ungulates and the human using the areas of the SNP. Methodology of my research included vantage points and regular monitoring from trails for Himalayan tahr, fixed line transect with belt drive method for musk deer and game birds, and microscopic hair identification in snow leopard's scat to investigate diet of snow leopard and to estimate prey selection. Based on available evidence and witness accounts of snow leopard attack on livestock, the patterns of livestock depredation were assessed. I obtained 201 sighting of Himalayan tahr (1760 individuals) and estimated 293 populations in post-parturient period (April-June), 394 in birth period (July -October) and 195 November- December) in rutting period. In average, ratio of male to females was ranged from 0.34 to 0.79 and ratio of kid to female was 0.21-0.35, and yearling to kid was 0.21- 0.47. The encounter rate for musk deer was 1.06 and density was 17.28/km2. For Himalayan monal, the encounter rate was 2.14 and density was 35.66/km2. I obtained 12 sighting of snow cock comprising 69 individual in Gokyo. The ratio of male to female was 1.18 and young to female was 2.18. Twelve species (8 species of wild and 4 species of domestic livestock) were identified in the 120 snow leopard scats examined. In average, snow leopard predated most frequently on Himalayan tahr and it was detected in 26.5% relative frequency of occurrence while occurred in 36.66% of all scats, then it was followed by musk deer (19.87%), yak (12.65%), cow (12.04%), dog (10.24%), unidentified mammal (3.61%), woolly hare (3.01%), rat sp. (2.4%), unidentified bird sp. (1.8%), pika (1.2%), and shrew (0.6%) (Table 5.8 ). Wild species were present in 58.99% of scats whereas domestic livestock with dog were present in 40.95% of scats. Snow leopard predated most frequently on wildlife species in three seasons; spring (61.62%), autumn (61.11%) and winter (65.51%), and most frequently on domestic species including dog in summer season (54.54%). In term of relative biomass consumed, in average, Himalayan tahr was the most important prey species contributed 26.27% of the biomass consumed. This was followed by yak (22.13%), cow (21.06%), musk deer (11.32%), horse (10.53%), wooly hare (1.09%), rat (0.29%), pika (0.14%) and shrew (0.07%). In average, domestic livestock including dog were contributed more biomass in the diet of snow leopard comprising 60.8% of the biomass consumed whilst the wild life species comprising 39.19%. The annual prey consumption by a snow leopard (based on 2 kg/day) was estimated to be three Himalayan tahr, seven musk deer, five wooly hare, four rat sp., two pika, one shrew and four livestock. In the present study, the highest frequency of attack was found during April to June and lowest to July to November. The day of rainy and cloudy was the more vulnerable to livestock depredation. Snow leopard attacks occurred were the highest at near escape cover such as shrub land and cliff. Both predation pressure on tahr and that on livestock suggest that the development of effective conservation strategies for two threatened species (predator and prey) depends on resolving conflicts between people and predators. Recently, direct control of free – ranging livestock, good husbandry and compensation to shepherds may reduce snow leopard – human conflict. In long term solution, the reintroduction of blue sheep at the higher altitudes could also “buffer” predation on livestock.
|
|
|
Sokolov G.A. (2003). Predatory mammals of Central Siberia, status of populations, influence of anthropogenic factors.
Abstract: The species resources of Siberia's fauna decrease from south to north. The highest diversity of species is observed in the mountain systems, the lowest in sub-zones of south and central taiga and steppe zone, where the cat family species are absent. During the last 50 150 years number of species has decreased two- to tenfold. Imperfect hunting management, farming, and mining operations resulted in transformation of the animal habitats. Population of fox, polecat, and sable has reduced; snow leopard and dhole becoming endangered species. If current tendencies continue to develop some species will disappear in the region in decades to come.
|
|
|
Sokov A.I. (1986). Environmental prerequisites for protection and sustainable use of predatory mammals in Tajikistan (Vol. Vol. 3.).
Abstract: In Tajikistan it is necessary to preserve big predators listed in the Red Book, such as Uncia uncia, Ursus arctos isabellinus, Hyaena hyaena, Felis lynx isabellina, Panthera pardus ciscaucasica. An anthropogenic influence has resulted in the species' habitat shrinkage, deficit of food, disturbance of trophic interactions. It is necessary to restore a tiger population in the Tigrovaya Balka nature reserve, and resolve the issue of protection and sustainable use of commercial predatory species.
|
|
|
Suryawanshi, K. R. (2009). Towards snow leopard prey recovery: understanding the resource use strategies and demographic responses of bharal Pseudois nayaur to livestock grazing and removal; Final project report.
Abstract: Decline of wild prey populations in the Himalayan region, largely due to competition with livestock, has been identified as one of the main threats to the snow leopard Uncia uncia. Studies show that bharal Pseudois nayaur diet is dominated by graminoids during summer, but the proportion of graminoids declines in winter. We explore the causes for the decline of graminoids from bharal winter diet and resulting implications for bharal conservation. We test the predictions generated by two alternative hypotheses, (H1) low graminoid availability caused by livestock grazing during winter causes bharal to include browse in their diet, and, (H2) bharal include browse, with relatively higher nutrition, to compensate for the poor quality of graminoids during winter. Graminoid availability was highest in areas without livestock grazing, followed by areas with moderate and intense livestock grazing. Graminoid quality in winter was relatively lower than that of browse, but the difference was not statistically significant. Bharal diet was dominated by graminoids in areas with highest graminoid availability. Graminoid contribution to bharal diet declined monotonically with a decline in graminoid availability. Bharal young to female ratio was three times higher in areas with high graminoid availability than areas with low graminoid availability. No starvation-related adult mortalities were observed in any of the areas. Composition of bharal winter diet was governed predominantly by the availability of graminoids in the rangelands. Since livestock grazing reduces graminoid availability, creation of livestock free areas is necessary for conservation of grazing species such as the bharal and its predators such as the endangered snow leopard in the Trans-Himalaya.
|
|