|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively.
|
|
|
Fox, J. L., Sinha, S. P., Chundawat, R. S., & Das, P. K. (1991). Status of the snow leopard Panthera uncia in Northwest India. Biological Conservation, 55(3), 283–298.
Abstract: Evidence of snow leopard presence was most abundant in C Ladakh, decreased southward toward the crest of the Himalaya, and was least on the S side of the main Himalaya. Prey populations, primarily blue sheep Pseudois nayaur and Asiatic ibex Capra ibex, were also more plentiful in the areas surveyed to the N of the main Himalaya. Perhaps 400 snow leopard occur throughout NW India. The stronghold of this species in India is apparently the trans- Himalayan ranges in Ladakh where new parks and reserves are being established, some in association with a snow leopard recovery programme of the state of Jammu and Kashmir and a 'Project Snow Leopard' of the central Indian government. Because of the generally low density of snow leopard, conservation measures must also be considered within the large areas of its range lying outside parks and reserves. -from Authors
|
|
|
Hanson, J. H., Schutgens, M., Lama, R.P., Aryal, A., Dhakal, M. (2018). Local attitudes to the proposed translocation of blue sheep Pseudois nayaur to Sagarmatha National Park, Nepal. Fauna & Flora International, , 1–7.
Abstract: Translocations are an important tool for the conservation
of biodiversity, but although ecological feasibility
studies are frequently conducted prior to implementation,
social feasibility studies that consider how local communities
perceive such projects are less common. The translocation
of blue sheep Pseudois nayaur to Sagarmatha National
Park, Nepal, has been proposed, to reduce livestock depredation
by snow leopards Panthera uncia by providing an alternative
prey base in addition to the small population of
Himalayan thar Hemitragus jemlahicus. This study used
systematic sampling, a quantitative questionnaire and qualitative
interviews within the Park to provide data on the social
viability of the proposed translocation. Quantitative
analysis revealed moderate levels of support but qualitative
analysis suggested that there are significant concerns about
the proposal. In addition,multiple regression analysis found
that women and livestock owners were significantly less
supportive, although the model had low explanatory
power. Potential crop damage and competition for forage
were frequently cited as concerns, especially amongst
those with a high level of dependence on natural resources.
Given the mixed response to the proposed translocation of
blue sheep to the Everest region, alleviating the reservations
of local residents is likely to be key to any further consultation,
planning or implementation.
|
|
|
Khanal, G., Poudyal, L. P., Devkota, B. P., Ranabhat, R., Wegge, P. (2018). Status and conservation of the snow leopard Panthera uncia in Api Nampa Conservation Area, Nepal. Fauna & Flora International, , 1–8.
Abstract: The snow leopard Panthera uncia is globally
threatened and reliable information on its abundance,
distribution and prey species is a prerequisite for its conservation.
In October-November 2014 we assessed the distribution
of the snow leopard in the recently established Api
Nampa Conservation Area in the Nepal Himalayas.
Within selected blocks we conducted sign surveys and
counted the number of bharal Pseudois nayaur, its principal
wild prey, along transects totalling 106 km.We recorded 203
putative snow leopard signs at an encounter rate of 1.91
signs/km. Generalized linear models of the number of
signs detected per transect showed that elevation had a positive
influence and human activities a negative influence on
sign encounter rate; prey abundance had only a weak positive
influence on sign encounter rate. Within the effectively
surveyed area of c. 2002 km2, we counted 527 bharal at an estimated
density of 2.28 animals/km2. Recruitment of bharal
was low, estimated at 48 kids/100 adult females, most likely a
result of poor or overgrazed rangeland. We estimate
the total number of bharal in this conservation area to be
.>1,000, a prey base that could sustain 6-9 snow leopards.
Based on our field observations, we identified human disturbance
and habitat degradation associated with extraction
of non-timber forest products, livestock grazing, and poaching
as the main threats to the snow leopard. Standardized
sign surveys, preferably supplemented by sampling with
remote cameras or with genetic analysis of scats would
provide robust baseline information on the abundance of
snow leopards in this conservation area.
|
|
|
Khatiwada, J. R., Chalise, M. K., & Kyes, R. (2007). Survey of Snow Leopard (Uncia uncia) and Blue Sheep (Pseudois nayaur) populations in the Kangchenjunga Conservation Area (KCA), Nepal. Final report.
Abstract: This study was carried out in the Kangchenjunga Conservation Area (KCA), Eastern Nepal from Feb – Nov 2007. We used the Snow Leopard Information Management System, SLIMS (second order survey technique) to determine the relative abundance of snow leopard in the upper part of KCA. Altogether, 36 transects (total length of 15.21 km) were laid down in the major three blocks of KCA. 104 Signs (77 scrapes, 20 feces, 2 Scent mark, 3 Pugmarks and 2 hairs) were recorded. Fixed-point count method was applied for blue sheep from appropriate vantage points. We counted total individual in each herd using 8x42 binocular and 15-60x spotting scope. A total of 43 herds and 1102 individuals were observed in the area. The standard SLIMS questionnaire was conducted to find out relevant information on livestock depredation patterns. Out of 35 households surveyed in KCA, 48% of herders lost livestock due to snow leopards. A total of 21 animals were reportedly lost due to snow leopards from August to September 2007.
|
|
|
Kohli, K., Sankaran, M., Suryawanshi, K. R., Mishra, C. (2014). A penny saved is a penny earned: lean season foraging strategy of an alpine ungulate. Animal Behaviour, (92), 93–100.
Abstract: Lean season foraging strategies are critical for the survival of species inhabiting highly seasonal environments
such as alpine regions. However, inferring foraging strategies is often difficult because of
challenges associated with empirically estimating energetic costs and gains of foraging in the field. We
generated qualitative predictions for the relationship between daily winter foraging time, body size and
forage availability for three contrasting foraging strategies including time minimization, energy intake
maximization and net energy maximization. Our model predicts that for animals employing a time
minimization strategy, daily winter foraging time should not change with body size and should increase
with a reduction in forage availability. For energy intake maximization, foraging time should not vary
with either body size or forage availability. In contrast, for a net energy maximization strategy, foraging
time should decrease with increase in body size and with a reduction in forage availability. We contrasted
proportion of daily time spent foraging by bharal, Pseudois nayaur, a dimorphic grazer, across
different body size classes in two high-altitude sites differing in forage availability. Our results indicate
that bharal behave as net energy maximizers during winter. As predicted by the net energy maximization
strategy, daily winter foraging time of bharal declined with increasing body size, and was lower in the
site with low forage availability. Furthermore, as predicted by our model, foraging time declined as the
winter season progressed. We did not find support for the time minimizing or energy intake maximizing
strategies. Our qualitative model uses relative rather than absolute costs and gains of foraging which are
often difficult to estimate in the field. It thus offers a simple way to make informed inferences regarding
animal foraging strategies by contrasting estimates of daily foraging time across gradients of body size
and forage availability.
|
|
|
Mishra, C., Madhusudan, M. D., & Datta, A. (2006). Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs (Vol. 40).
Abstract: The high altitudes of Arunachal Pradesh,India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carnivores, 10 ungulates and 5 primates) were recorded, of which 13 are categorized as Endangered or Vulnerable on the IUCN Red List. One species of primate, the Arunachal macaque Macaca munzala, is new to science and the Chinese goral Nemorhaedus caudatus is a new addition to the ungulate fauna of the Indian subcontinent. We documented peoples' dependence on natural resources for grazing and extraction of timber and medicinal plants. The region's mammals are threatened by widespread hunting. The snow leopard Uncia uncia and dhole Cuon alpinus are also persecuted in retaliation for livestock depredation. The tiger Panthera tigris, earlier reported from the lower valleys, is now apparently extinct there, and range reductions over the last two decades are reported for bharal Pseudois nayaur and musk deer Moschus sp.. Based on mammal species richness, extent of high altitude habitat, and levels of anthropogenic disturbance, we identified a potential site for the creation of Arunachal's first high altitude wildlife reserve (815 km2). Community-based efforts that provide incentives for conservation-friendly practices could work in this area, and conservation awareness programmes are required, not just amongst the local communities and schools but for politicians, bureaucrats and the army.
|
|
|
Namgail, T., Fox, J., & Bhatnagar, Y. V. (2004). Habitat segregation between sympatric Tibetan argali Ovis ammon hodgsoni and blue sheep Pseudois nayaur in the Indian Trans-Himalaya. Journal of Zoology, 262, 57–63.
Abstract: Tibetan argali Ovis ammon hodgsoni and blue sheep Pseudois nayaur have almost completely overlapping distributions encompassing most of the Tibetan plateau and its margins. Such a sympatric distribution of related species with similar ecological requirements implies that there is some degree of resource partitioning. This may be accomplished on the basis of habitat and/or diet separation. This study evaluated such ecological separation on the basis of physical habitat partitioning by these two sympatric ungulates in Hemis High Altitude National Park, Ladakh, India, in an area where the argali established a small new population in 1978. Such separation was tested for
on the basis of expected difference between the species in their proximity to cliffs, associated with species-specific anti-predator behaviour. Tibetan argali selected habitats away from cliffs while blue sheep selected habitats close to cliffs. Blue sheep also selected steep slopes whereas argali selected gentle slopes. The two species did not differ
in their use of habitats in terms of elevation. They did, however, differ in their use of plant communities; blue sheep selected sub-shrub and grass-dominated communities whilst argali selected forb-dominated communities. We suggest that the two species coexist in this site as a result of the differential use of habitat associated with their
species-specific anti-predator strategies.
|
|
|
Oli, M. (1994). Snow leopards and blue sheep in Nepal: Densities and predator: Prey ratio (Vol. 75).
Abstract: I studied snow leopards (Panthera uncia) and blue sheep (Pseudois nayaur) in Manang District, Annapurna Conservation Area, Nepal, to estimate numbers and analyze predatorprey interactions. Five to seven adult leopards used the 105-km2 study area, a density of 4.8 to 6.7 leopards/100 km2. Density of blue sheep was 6.6-10.2 sheep/km2, and biomass density was 304 kg/km2. Estimated relative biomass consumed by snow leopards suggested that blue sheep were the most important prey; marmots (Marmota himalayana) also contributed significantly to the diet of snow leopards. Snow leopards in Manang were estimated to harvest 9-20% of total biomass and 11-24% of total number of blue sheep annually. Snow leopard :blue sheep ratio was 1 :1 14-1 :159 on a weight basis, which was considered sustainable given the importance of small mammals in the leopard's diet and the absence of other competing predators.
|
|
|
Schaller, G. B. (1987). Status of large mammals in the Taxkorgan Reserve, Xinjiang, China. Biological-Conservation, 42(1), 53–71.
Abstract: A status survey of large mammals was conducted in the W half of 14 000 km“SUP 2” Taxkorgan Reserve. Only one viable population of fewer than 150 Marco Polo sheep Ovis ammon poli survives; it appears to be augmented by adult males from Russia and Afghanistan during the winter rut. Asiatic ibex Capra ibex occur primarily in the western part of the reserve and blue sheep Pseudois nayaur – the most abundant wild ungulate – in the E and SE parts. The 2 species overlap in the area of contact. Counts revealed an average wild ungulate density of 0.34 animals km“SUP -2”. Snow leopard Panthera uncia were rare, with possibly 50-75 in the reserve, as were wolves Canis lupus and brown bear Ursus arctos. The principal spring food of snow leopard was blue sheep (60%) and marmot (29%). Local people have greatly decimated wildlife. Overgrazing by livestock and overuse of shrubs for fuelwood is turning this arid steppe habitat into desert. -from Authors
|
|