|
Abdunazarov B.B. (2002). Biodiversity of mammals in the Western Tien Shan and its conservation.
Abstract: The mammal fauna of Uzbekistan's mountain ecosystems is represented by some 60 species. Data on mammal species composition in the Western Tien Shan (48 species) and Pamir-Alai (57 species) is given. A quantity of species endemic to the mountainous ecosystems of Uzbekistan is defined. Quantities of nine rare species inhabiting the mountain ecosystems, including snow leopard, are given. Number of snow leopard in Pamir-Alai and the Western Tien Shan is estimated to be 30-50 animals.
|
|
|
Abzalov A.A. (1976). Principles of the nature reserve establishment in Uzbekistan.
Abstract: It provides a brief description of nature reserves network in Uzbekistan: Karakul and Vardanza (in desert); Chatkal, Zaamin, Nurata, and Kyzylsu (in mountains); Aralpaigambar, Kyzylkum, Badaitugai, Zeravshan (riverine forests). Snow leopard is protected in the Chatkal, Zaamin, and Kizilsu nature reserves.
|
|
|
Ahmad, A., Rawat, J. S., & Rai, S. C. (1990). An Analysis of the Himalayan Environment and Guidelines for its Management and Ecologically Sustainable Development. Environmentalist, 10(4), 281–298.
Abstract: The impacts of human activities on the bio-geophysical and socio-economic environment of the Himalayas are analysed. The main man-induced activities which have accelerated ecological degradation and threatened the equilibrium of Himalayan mountain ecosystems are stated as: unplanned land use, cultivation on steep slopes, overgrazing, major engineering activities, over-exploitation of village or community forests, lopping of broad leaved plant species, shifting cultivation (short cycle) in north-east India, tourism and recreation. The geomorphological conditions are major factors responsible for landslides which cause major havoc every year in the area. Wild fauna, like musk deer and the snow leopard are now under threat partially due to changes in their habitat and the introduction of exotic plant species. Population pressure and migration are major factors responsible for poverty in the hills. The emigration of the working male population has resulted in the involvement of women as a major work-force. Guidelines, with special emphasis on the application of environmental impact assessments for the management of the Himalayas, are proposed. -from Authors
|
|
|
An E.S. (1980). The Chatkal Mountain Forest State Nature Reserve. The Kyzylsu Mountain Juniperous State Nature Reserve. The Miraki State Nature Reserve.
Abstract: It describes natural conditions, area, flora and fauna of the three mountain nature reserves in Uzbekistan: Chatkal, Kyzylsu, and Miraki. Siberian mountain ibex, roe deer, wild boar, Turkistan lynx, Tien Shan brown bear, fox, stone marten, Menzbier's marmot, porcupine, ermine, and Tien Shan souslik inhabit the Chatkal nature reserve. Snow leopard can be found in a top rocky part of the ridge. In the Kyzylsu nature reserve, there are 23 mammal species including, among the others, white-clawed bear, snow leopard, Iranian otter, Turkistan lynx, wild-boar, badger, porcupine, long-tailed marmot, hare-tolai, stone marten, Pamiri shrew, and ibex; in the Miraki nature reserve snow leopard, white-clawed bear, ibex, wolf, fox, porcupine, long-tailed marmot, hare-talai, forest dormouse, red pica, and a number of Red Data Book bird species are protected.
|
|
|
Artykbaev P.K. (1981). Fauna.
Abstract: Uzbekistan's fauna includes 97 mammal species (insectivorous six species, Cheiroptera 20, hare type species 2, rodents 37, ungulates 8); 379 bird species, of which 184 are passerine; 58 reptile species; 69 fish species. Species inhabiting sand deserts, clay deserts, and mountains are listed. The following mammal species inhabit the alpine zone: bear, snow leopard, ermine, weasel, wolf, Siberian mountain ibex, wild sheep, Menzbier's marmot and long-tailed marmot, voles, red pica. The following game species are listed in the Red Book: bear, leopard, lynx, snow leopard, cheetah, caracal, otter, marbled polecat, goitered gazelle, Bukhara deer, marchor, and wild sheep (there are two wild sheep sub-species in the country Bukhara and Kizilkum wild sheep).
|
|
|
Bagchi, S., Mishra, C., & Bhatnagar, Y. (2004). Conflicts between traditional pastoralism and conservation of Himalayan ibex (Capra sibirica) in the Trans-Himalayan mountains. Animal Conservation, 7, 121–128.
Abstract: There is recent evidence to suggest that domestic livestock deplete the density and diversity of wild herbivores in the cold deserts of the Trans-Himalaya by imposing resource limitations. To ascertain the degree and nature of threats faced by Himalayan ibex (Capra sibirica) from seven livestock species, we studied their resource use patterns over space, habitat and food dimensions in the pastures of Pin Valley National Park in the Spiti region of the Indian Himalaya. Species diet profiles were obtained by direct observations. We assessed the similarity in habitat use and diets of ibex and livestock using Non-Metric Multidimensional Scaling. We estimated the influence of the spatial distribution of livestock on habitat and diet choice of ibex by examining their co-occurrence patterns in cells overlaid on the pastures. The observed co-occurrence of ibex and livestock in cells was compared with null-models generated through Monte Carlo simulations. The results suggest that goats and sheep impose resource limitations on ibex and exclude them from certain pastures. In the remaining suitable habitat, ibex share forage with horses. Ibex remained relatively unaffected by other livestock such as yaks, donkeys and cattle. However, most livestock removed large amounts of forage from the pastures (nearly 250 kg of dry matter/day by certain species), thereby reducing forage availability for ibex. Pertinent conservation issues are discussed in the light of multiple-use of parks and current socio-economic transitions in the region, which call for integrating social and ecological feedback into management planning.
|
|
|
Berg L.S. (1938). Fauna.
Abstract: It provides description of fauna of the Central Asia mountains. Ibex (Capra sibirica) was noticed to keep to the alpine and sub-alpine zone and never descends bellow 2,500 m. Hunting for ibex and wild sheep, snow leopard (Leopardus uncia) keeps at the same elevation.
|
|
|
Bobrinskiy N.A. (1938). Preditors (Carnivora). The mountains of Central Asia. 1938.
Abstract: It describes fauna of the Tien Shan, Pamir and Hissar mountains of Central Asia. The mountains of Central Asia. Ibex (Capra sibirica) and snow leopard (Uncia uncia) are listed among other inhabitants of highlands in Tien Shan and Pamir Hissar.
|
|
|
Bobrinskiy N.A. (1946). Mountains of Central Asia.
Abstract: A general description of fauna complexes of Central Asia's mountains (Djungar Ala-Tau, Tien-Shan, Gissar, Pamir, Kopet-Dag, Greater Balkhans) is given. A review of main animal groups and an attempt to zone fauna of Central Asia's mountains are made. Fauna of Central Asia's highlands with its specific variety of species (snow leopard, ibex, argali, snow cock and others) is western outpost of Inner Asia's mountain fauna. Snow leopard inhabits highlands of Djungar Ala-Tau, East and West Tien Shan, Bukhara and East Pamir.
|
|
|
Bobrinskiy N.A. (1951). The mountains of Central Asia.
Abstract: Given is a general characteristic of fauna complexes in the mountains of Central Asia (Jungar Ala-Tau, Tien Shan, Hissar Alai, Kopet-Dag), peculiarities of animal distribution in association with folded mountain relief, vertical zoning, anthropogenic influence and importance of mountain fauna for human beings. It provides a description of main animal groups and is an effort of zoning fauna of the mountains of Central Asia.
|
|
|
Bobrinskiy N.A. (1967). Mountains of Central Asia.
Abstract: It provides a zoogeographical description of Central Asia mountains: Tien Shan (west and east), Pamir, the Turkestan and Hissar ridges, and ruinous mountains in Kyzylkum. Distribution of various animal species over the area under study is described. Data concerning Central Asia sheep, ibex, and snow leopard in the alpine meadow zone, and data concerning the otter (in the Tupalang river basin) and grey partridge is presented. The author noted that generally fauna of Tien Shan, Hissar, and Pamir is similar to that of Inner Asia. The other type of fauna more similar to that of Transcaucasia is typical for Kopet-Dag.
|
|
|
Bogdanov O.P. (1992). Snow leopard or irbis Uncia Uncia.
Abstract: Snow leopard and its habitat within the USSR and Uzbek SSR are described. Its habitat in the Chatkal and Hissar ridges are described too. Given are data concerning alimentary biology, reproduction, and attitude to man. Female snow leopards become mature at the age of two three years, male at the age of four years. Reproduction occurs once every two years. Presumably, there are 10 animals in the country. Snow leopard is protected in four nature reserves in Uzbekistan and a number of nature reserves in neighbour countries.
|
|
|
Dementiev G.P. (1967). Quadrupeds inhabitants of the mountains.
Abstract: All species inhabiting the highlands of Asia are normally referred to as herbivorous or predators. A majority of alpine land species (rodents and ungulates) feeds upon leaves, stalks, and roots of plants. Among widely distributed highland species the most interesting are marmots, red pica, grey vole, argali, and ibex. Argali and ibex are preyed on by snow leopards. There are reasons to believe that these mountain animal species are more ancient than their cognates in a plain. All the way from Central Asia to Europe, species belonging to the eastern and western fauna complexes are observed to interpenetrate.
|
|
|
Farrington, J. (2005). A Report on Protected Areas, Biodiversity, and Conservation in the Kyrgyzstan Tian Shan with Brief Notes on the Kyrgyzstan Pamir-Alai and the Tian Shan Mountains of Kazakhstan, Uzbekistan, and China. Ph.D. thesis, , Kyrgyzstan.
Abstract: Kyrgyzstan is a land of towering mountains, glaciers, rushing streams, wildflowercovered meadows, forests, snow leopards, soaring eagles, and yurt-dwelling nomads. The entire nation lies astride the Tian Shan1, Chinese for “Heavenly Mountains”, one of the world's highest mountain ranges, which is 7439 m (24,400 ft) in elevation at its highest point. The nation is the second smallest of the former Soviet Central Asian republics. In
spite of Kyrgyzstan's diverse wildlife and stunning natural beauty, the nation remains little known, and, as yet, still on the frontier of international conservation efforts. The following report is the product of 12 months of research into the state of conservation and land-use in Kyrgyzstan. This effort was funded by the Fulbright Commission of the U.S. State Department, and represents the most recent findings of the author's personal environmental journey through Inner Asia, which began in 1999. When I first started my preliminary research for this project, I was extremely surprised to learn that, even though the Tian Shan Range has tremendous ecological significance for conservation efforts in middle Asia, there wasn't a single major international conservation organization with an office in the former Soviet Central Asian republics. Even more surprising was how little awareness there is of conservation issues in the Tian Shan region amongst conservation workers in neighboring areas who are attempting to preserve similar species assemblages and ecosystems to those found in the Tian Shan. Given this lack of awareness, and the great potential for the international community to make a positive contribution towards improving the current state of biodiversity conservation in Kyrgyzstan and Central Asia, I have summarized my findings on protected areas and conservation in Kyrgyzstan and the Tian Shan of Kazakhstan, Uzbekistan, and Xinjiang in the chapters below. The report begins with some brief background information on geography and society in the Kyrgyz Republic, followed by an overview of biodiversity and the state of conservation in the nation, which at the present time closely parallels the state of conservation in the other former Soviet Central Asian republics. Part IV of the report provides a catalog of all major protected areas in Kyrgyzstan and the other Tian Shan nations, followed by a list of sites in Kyrgyzstan that are as yet unprotected but merit protection. In the appendices the reader will find fairly comprehensive species lists of flora and fauna found in the Kyrgyz Republic, including lists of mammals, birds, fish, reptiles, amphibians, trees and shrubs, wildflowers, and endemic plants. In addition, a
draft paper on the history and current practice of pastoral nomadism in Kyrgyzstan has been included in Appendix A. While the research emphasis for this study was on eastern Kyrgyzstan, over the course of the study the author did have the opportunity to make brief journeys to southern Kyrgyzstan, Uzbekistan, Kazakhstan, and Xinjiang. While falling short of being a definitive survey of protected areas of the Tian Shan, the informational review which
follows is the first attempt at bringing the details of conservation efforts throughout the entire Tian Shan Range together in one place. It is hoped that this summary of biodiversity and conservation in the Tian Shan will generate interest in the region amongst conservationists, and help increase efforts to protect this surprisingly unknown range that forms an island of meadows, rivers, lakes, and forests in the arid heart of Asia.
|
|
|
Formozov A.N. (1987). Fauna of mountainous areas in Kazakhstan.
Abstract: The author provides description of fauna of Kazakhstan's mountainous areas. Fauna of the mountain taiga is also typical for the forests of South Siberia. Ungulate species such as musk deer and ibex are common for rocky taiga areas. In the Altai, ibex, musk deer, and wild sheep are preyed on by dhole and snow leopard and more typical species such as glutton and wolf. Ibex, argali, and irbis are typical for Transili Ala-Tau and West Tien Shan. Tien Shan is the only area of the USSR with quite many irbis preserved. The ridges of this mountainous area located in Kazakhstan are very likely to be an area the most densely populated by snow leopards within the predator's habitat.
|
|
|
Fox, J. L., Sinha, S.P., Chundawat, R.S. (1992). Activity patterns and habitat use of ibex in the Himalaya mountains of India. Journal of Mammology, 73(3), 527–534.
|
|
|
Gvozdetskiy N.A. (1970). Altitudal landscape zones.
Abstract: It provides geobotanic and zoogeographic description of vertical landscape zoning. Particularly, in alpine meadows and meadow steppes and partially zone of mountain plateau (“syrt”) of highland, the common species are argali (Ovis ammon poloi), ibex (Capra sibirica sakeen), snow leopard (Felis uncia), Tien Shan bear (Ursus arctos leuconyx), and red pica; very numerous are marmots and vole (Microtus gregalis). The bird fauna includes Himalayan snow-cock (Tetraogallus himalayensis), Alpine chough (Pyrrhocorax graculus), chough (P. pyrrhocorax), horned lark (Eremophila alpestris), rosefinch species. There are many waterfowl birds on the lakes. There are many Central Asian, particularly Tibetan species among the animals inhabiting highlands of the Tien Shan.
|
|
|
Heiz A.V. (1983). Snow leopard in Kyrgyzstan and its protection (Vol. 3).
Abstract: In the year 1970, the quantity of snow leopards in Kyrgyzstan was defined as 1,300 animals, while in the years to follow 1,600 animals were recorded. A snow leopard population has significantly decreased since recently because of intense extermination of snow leopard's prey ungulates, particularly ibex. In some areas of the Kyrgyz ridge livestock is growing in number thus affecting snow leopard population. It is extremely rare that snow leopard would attack livestock. Snow leopards can be caught under special license. Educational and awareness work among shepherds and hunters residing in the mountainous area of the country needs to be improved.
|
|
|
Hussain, S. (2000). Protecting the snow leopard and enhancing farmers' livelihoods: A pilot insurance scheme in Baltistan. Mountain-Research-and-Development., 20, 226–231.
Abstract: Snow leopards that prey on poor farmers' livestock pose a twofold problem: they endanger farmers' precarious mountain livelihoods as well as the survival of the snow leopard as a unique species since farmers engage in retaliatory killings. Project Snow Leopard (PSL), a recent pilot initiative in Baltistan, involves a partnership between local farmers and private enterprise in the form of an insurance scheme combined with ecotourism activities. Farmers jointly finance the insurance scheme through the payment of premiums per head of livestock they own, while the remaining funds are provided by profits from trekking expeditions focusing on the snow leopard. The insurance scheme is jointly managed by a village management committee and PSL staff. The scheme is structured in such a way that villagers monitor each other and have incentives to avoid cheating the system.
|
|
|
Jack, R. (2008). DNA Testing and GPS positioning of snow leopard (Panthera uncia) genetic material in the Khunjerab National Park Northern Areas, Pakistan.
Abstract: The protection of Snow Leopards in the remote and economically disadvantaged Northern Areas of Pakistan needs local people equipped with the skills to gather and present information on the number and range of individual animals in their area. It is important for the success of a conservation campaign that the people living in the area are engaged in the conservation process. Snow Leopards are elusive and range through inhospitable terrain so direct study is difficult. Consequently the major goals for this project were twofold, to gather information on snow leopard distribution in this area and to train local university students and conservation management professionals in the techniques used for locating snow leopards without the need to capture or even see the animals. This project pioneered the use of DNA testing of field samples collected in Pakistan to determine the distribution of snow leopards and to attempt to identify individuals. These were collected in and around that country's most northerly national park, the Kunjurab National Park, which sits on the Pakistan China border. Though the Northern Areas is not a well developed part of Pakistan, it does possess a number of institutions that can work together to strengthen snow leopard conservation. The first of these is a newly established University with students ready to be trained in the skills needed. Secondly WWF-Pakistan has an office in the main town and a state of the art GIS laboratory in Lahore and already works closely with the Forest Department who manage the national park. All three institutions worked together in this project with WWF providing GIS expertise, the FD rangers, and the university students carrying out the laboratory work. In addition in the course of the project the University of the Punjab in Lahore also joined the effort, providing laboratory facilities for the students. As a result of this project maps have been produced showing the location of snow leopards in
two areas. Preliminary DNA evidence indicates that there is more than one animal in this
relatively small area, but the greatest achievement of this project is the training and
experience gained by the local students. For one student this has been life changing. Due to
the opportunities provided by this study the student, Nelofar gained significant scientific
training and as a consequence she is now working as a lecturer and research officer for the
Center for Integrated Mountain Research, New Campus University of the Punjab, Lahore
Pakistan
|
|
|
Jain, N., Wangchuk, R., & Jackson, R. (2003). An Assessment of CBT and Homestay Sites in Spiti District, Himachal Pradesh.
Abstract: The survey described in this report builds upon prior CBT activities undertaken by The Mountain Institute (TMI) in partnership with the Snow Leopard Conservancy (SLC) in Ladakh, supported by a grant from UNESCO (with co-financing from SLC). Under the evolving concept of “Himalayan Homestays”, initially developed and tested in Ladakh, it is proposed that activities be expanded to selected states in India in a strategic and effective way. Himalayan Homestays are part of a larger integrated program to link snow leopard conservation with local livelihoods in Asia.
|
|
|
Jegal, A., Kashkarov, E., & Matyushkin E.N. (2010). Simple method to distinguish tracks of snow leopard and lynx.
Abstract: In the Mongolian and Gobi Altai mountain ranges and also in some other mountains in this region, the
distribution of the snow leopard and Eurasian lynx overlaps. In some cases, local hunters cannot
distinguish the tracks of both these animals. Therefore we outline a simple method to distinguish tracks of
the snow leopard and lynx.
|
|
|
Jiang, Z. (2005). Snow leopards in the Dulan International Hunting Ground, Qinghai, China.
Abstract: From March to May, 2006œªwe conducted extensive snow leopard surveys in the Burhanbuda Mountain Kunlun Mountains, Qinghai Province, China. 32 linear transect of 5~15 km each, which running through each vegetation type, were surveyed within the study area. A total of 72 traces of snow leopard were found along 4 transects (12.5% of total transects). The traces included pug marks or footprints, scrapes and urine marks. We estimated the average density of wild ungulates in the region was 2.88ñ0.35 individuals km-2(n=29). We emplaced 16 auto2 trigger cameras in different environments and eight photos of snow leopard were shot by four cameras and the capture rate of snow leopard was 71.4%. The minimum snow leopard population size in the Burhanbuda Mountain was two, because two snow leopards were phototrapped by different cameras at almost same time. Simultaneously, the cameras also shot 63 photos of other wild animals, including five photos are unidentified wild animals, and 20 photos of livestock. We evaluated the human attitudes towards snow leopard by interviewing with 27 Tibetan householders of 30 householders live in the study area. We propose to establish a nature reserve for protecting and managing snow leopards in the region. Snow leopard (Uncia uncia) is considered as a unique species because it lives above the snow line, it is endemic to alpines in Central Asia, inhabiting in 12 countries across Central Asia (Fox, 1992). Snow leopard ranges in alpine areas in Qinghai, Xinjiang, Inner Mongolia, Tibet, Gansu and Sichuan in western China (Liao, 1985, 1986; Zhou, 1987; Ma et al., 2002; Jiang & Xu, 2006). The total population and habitat of snow leopards in China are estimated to be 2,000~2,500 individuals and 1,824,316 km2, only 5% of which is under the protection of nature reserves. The cat's current range is fragmented (Zou & Zheng, 2003). Due to strong human persecutions, populations of snow leopards decreased significantly since the end of the 20th century. Thus, the
snow leopards are under the protection of international and domestic laws. From March to May, 2006, we conducted two field surveys in Zhiyu Village, Dulan County in Burhanbuda Mountain, Kunlun Mountains, China to determine the population, distribution and survival status of snow leopards in the area. The aim of the study was to provide ecologic data for snow leopard conservation.
|
|
|
Kadamshoev M. (1990). Establishment of highland nature reserves required (Vol. Part 1.).
Abstract: Human population growth in the Mountain Badakhshan autonomous province will result in changes of wild life habitat. The first highland nature reserve (Muksu river basin) is proposed to be established within the habitat of Marco Polo sheep, Siberian ibex, Tien Shan brown bear, snow leopard, Himalayan and Tibetan snow-cock, bar-headed goose, bearded and Himalayan vultures. The Mountain Badakhshan nature reserve will serve as a reference for other highland landscapes of the USSR, a `fiduciary' of gene bank containing valuable endemic, rare, and endangered animal and plant species.
|
|
|
Kashkadarinskaya Pravda Newspaper. (1983). Snow leopard goes to Frunze (Vol. 79 (26-11)).
Abstract: In canyon Karakol of the Alatoo ridge, a snow leopard was caught for a zoo of Frunze.
|
|