Home | << 1 2 3 >> |
(1978). Miraki Reservation, Chatkal Reservation.
Abstract: It describes history of the Miraki and Chatkal nature reserves' establishment and provides data concerning area, landscapes, altitude zoning, flora and fauna as well as natural monuments.
|
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
Keywords: Nepal; recovery; Sagarmatha Mount Everest National Park; snow leopard; Uncia uncia; surveys; survey; snow; snow-leopard; leopard; uncia; Uncia-uncia; valley; Sagarmatha; national; national park; National-park; park; using; information; management; system; research; transects; transect; sign; areas; area; snow leopards; snow-leopards; leopards; 40; Himalayan; tahr; musk; musk-deer; deer; location; recent; species; grazing; land; Forest; habitat; domestic; wild; ungulates; ungulate; livestock; tourism; development; traditional; land use; land-use; use; wildlife
|
Alibekov L.A. (1978). Fauna.
Abstract: Represented is fauna of big salt-marsh valleys and pre-Kyzylkum area, a tier of low desert foothill valleys, tiers of lowland ridges, deeply cut hillside midlands, and cold highlands of the watershed ridge-top tier in the Jizak region of Uzbekistan. The highest tier of the Jizak region, a habitat of snow leopard, Menzbier's marmot, Siberian ibex, sometimes wild Tajik sheep coming from the East, bear ascending from lower elevations, and wolf in summer, has the most adverse living conditions. Central Asia argali and stone marten inhabit in central part of the North Nurata ridge.
Keywords: Uzbekistan; Jizak region; fauna; landscape; biotic factors; fishes; reptiles; birds; insects; mammals; snow leopard.; 5970; Russian
|
Allen, P., & Macray, D. (2002). Snow Leopard Enterprises Description and Summarized Business Plan.. Seattle: Islt.
Abstract: The habitat for both humans and snow leopards in Central Asia is marginal, the ecosystem fragile. The struggle for humans to survive has often, unfortunately, brought them into conflict with the region's dwindling snow leopard populations. Herders commonly see leopards as a threat to their way of life and well-being. Efforts to improve the living conditions of humans must consider potential impacts on the environment. Likewise, conservation initiatives cannot ignore humans as elements of the landscape with a right to live with dignity and pride. Based on these principles, the International Snow Leopard Trust has developed a new conservation model that addresses the needs of all concerned.
We call it Snow Leopard Enterprises.. Keywords: snow; leopard; enterprises; buisness; plan; habitat; humans; conflict; irbis; products; wool; conservation; marketing; Mongolia; social; economic; conflicts; country; countries; socks; hats; gloves; 4890; Human; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; central; Central Asia; asia; ecosystem; region; populations; population; herders; herder; threat; potential; impact; environment; Elements; landscape; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; snow-leopard-enterprises
|
Atzeni, L., Wang, J., Riordan, P., Shi, K., Cushman, S. A. (2023). Landscape resistance to gene flow in a snow leopard population from Qilianshan National Park, Gansu, China. Landscape Ecology, .
Abstract: Context: The accurate estimation of landscape resistance to movement is important for ecological understanding and conservation applications. Rigorous estimation of resistance requires validation and optimization. One approach uses genetic data for the optimization or validation of resistance models. Objectives We used a genetic dataset of snow leopards from China to evaluate how landscape genetics resistance models varied across genetic distances and spatial scales of analysis. We evaluated whether landscape genetics models were superior to models of resistance derived from habitat suitability or isolation-by-distance.
Methods: We regressed genetically optimized, habitat-based, and isolation-by-distance hypotheses against genetic distances using mixed effect models. We explored all subset combinations of genetically optimized variables to find the most supported resistance scenario for each genetic distance. Results: Genetically optimized models always out-performed habitat-based and isolation-by-distance hypotheses. The choice of genetic distances influenced the apparent influence of variables, their spatial scales and their functional response shapes, producing divergent resistance scenarios. Gene flow in snow leopards was largely facilitated by areas of intermediate ruggedness at intermediate elevations corresponding to small-to-large valleys within and between the mountain ranges. Conclusions: This study highlights that landscape genetics models provide superior estimation of functional dispersal than habitat surrogates and suggests that optimization of genetic distance should be included as an optimization routine in landscape genetics, along with variables, scales, effect size and functional response shape. Furthermore, our study provides new insights on the ecological conditions that promote gene flow in snow leopards, which expands ecological knowledge, and we hope will improve conservation planning. |
Bagchi, S., Sharma, R. K., Bhatnagar, Y.V. (2020). Change in snow leopard predation on livestock after revival of wild prey in the Trans-Himalaya. Wildlife Biology, , 1–11.
Abstract: Human–wildlife conflict arising from livestock-losses to large carnivores is an important challenge faced by conservation. Theory of prey–predator interactions suggests that revival of wild prey populations can reduce predator’s dependence on livestock in multiple-use landscapes. We explore whether 10-years of conservation efforts to revive wild prey could reduce snow leopard’s Panthera uncia consumption of livestock in the coupled human-and-natural Trans-Himalayan ecosystem of northern India. Starting in 2001, concerted conservation efforts at one site (intervention) attempted recovery of wild- prey populations by creating livestock-free reserves, accompanied with other incentives (e.g. insurance, vigilant herding). Another site, 50km away, was monitored as status quo without any interventions. Prey remains in snow leopard scats were examined periodically at five-year intervals between 2002 and 2012 to determine any temporal shift in diet at both sites to evaluate the effectiveness of conservation interventions. Consumption of livestock increased at the status quo site, while it decreased at the intervention-site. At the intervention-site, livestock-consumption reduced during 2002–2007 (by 17%, p = 0.06); this effect was sustained during the next five-year interval, and it was accompanied by a persistent increase in wild prey populations. Here we also noted increased predator populations, likely due to immigration into the study area. Despite the increase in the predator population, there was no increase in livestock-consumption. In contrast, under status quo, dependence on livestock increased during both five-year intervals (by 7%, p=0.08, and by 16%, p=0.01, respectively). These contrasts between the trajectories of the two sites suggest that livestock-loss can potentially be reduced through the revival of wild prey. Further, accommodating counter-factual scenarios may be an important step to infer whether conservation efforts achieve their targets, or not.
|
Changxi, X., Bai, D., Lambert, J. P., Li, Y., Cering, L., Gong, Z., Riordan, P., Shi, K. (2022). How Snow Leopards Share the Same Landscape with Tibetan Agro-pastoral Communities in the Chinese Himalayas. Journal of Resources and Ecology, 13(3), 483–500.
Abstract: The snow leopard (Panthera uncia) inhabits a human-altered alpine landscape and is often tolerated by residents in regions where the dominant religion is Tibetan Buddhism, including in Qomolangma NNR on the northern side of the Chinese Himalayas. Despite these positive attitudes, many decades of rapid economic development and population growth can cause increasing disturbance to the snow leopards, altering their habitat use patterns and ultimately impacting their conservation. We adopted a dynamic landscape ecology perspective and used multi-scale technique and occupancy model to better understand snow leopard habitat use and coexistence with humans in an 825 km2 communal landscape. We ranked eight hypothetical models containing potential natural and anthropogenic drivers of habitat use and compared them between summer and winter seasons within a year. HABITAT was the optimal model in winter, whereas ANTHROPOGENIC INFLUENCE was the top ranking in summer (AICcw≤2). Overall, model performance was better in the winter than in the summer, suggesting that perhaps some latent summer covariates were not measured. Among the individual variables, terrain ruggedness strongly affected snow leopard habitat use in the winter, but not in the summer. Univariate modeling suggested snow leopards prefer to use rugged land in winter with a broad scale (4000 m focal radius) but with a lesser scale in summer (30 m); Snow leopards preferred habitat with a slope of 22° at a scale of 1000 m throughout both seasons, which is possibly correlated with prey occurrence. Furthermore, all covariates mentioned above showed inextricable ties with human activities (presence of settlements and grazing intensity). Our findings show that multiple sources of anthropogenic activity have complex connections with snow leopard habitat use, even under low human density when anthropogenic activities are sparsely distributed across a vast landscape. This study is also valuable for habitat use research in the future, especially regarding covariate selection for finite sample sizes in inaccessible terrain.
Keywords: habitat use; landscape ecology; occupancy model; Qomolangma; Panthera uncia
|
Chetri, M., Odden, M., Sharma, K., Flagstad, O., Wegge, P. (2019). Estimating snow leopard density using fecal DNA in a large landscape in north-central Nepal. Global Ecology and Conservation, (17), 1–8.
Abstract: Although abundance estimates have a strong bearing on the conservation status of a
species, less than 2% of the global snow leopard distribution range has been sampled systematically, mostly in small survey areas. In order to estimate snow leopard density across a large landscape, we collected 347 putative snow leopard scats from 246 transects (490 km) in twenty-six 5 5km sized sampling grid cells within 4393 km2 in Annapurna- Manaslu, Nepal. From 182 confirmed snow leopard scats, 81 were identified as belonging to 34 individuals; the remaining were discarded for their low (<0.625) quality index. Using maximum likelihood based spatial capture recapture analysis, we developed candidate model sets to test effects of various covariates on density and detection of scats on transects. The best models described the variation in density as a quadratic function of elevation and detection as a linear function of topography. The average density estimate of snow leopards for the area of interest within Nepal was 0.95 (SE 0.19) animals per 100 km2 (0.66e1.41 95% CL) with predicted densities varying between 0.1 and 1.9 in different parts, thus highlighting the heterogeneity in densities as a function of habitat types. Our density estimate was low compared to previous estimates from smaller study areas. Probably, estimates from some of these areas were inflated due to locally high abundances in overlap zones (hotspots) of neighboring individuals, whose territories probably range far beyond study area borders. Our results highlight the need for a large-scale approach in snow leopard monitoring, and we recommend that methodological problems related to spatial scale are taken into account in future snow leopard research. |
Farrington, J. (2005). A Report on Protected Areas, Biodiversity, and Conservation in the Kyrgyzstan Tian Shan with Brief Notes on the Kyrgyzstan Pamir-Alai and the Tian Shan Mountains of Kazakhstan, Uzbekistan, and China. Ph.D. thesis, , Kyrgyzstan.
Abstract: Kyrgyzstan is a land of towering mountains, glaciers, rushing streams, wildflowercovered meadows, forests, snow leopards, soaring eagles, and yurt-dwelling nomads. The entire nation lies astride the Tian Shan1, Chinese for “Heavenly Mountains”, one of the world's highest mountain ranges, which is 7439 m (24,400 ft) in elevation at its highest point. The nation is the second smallest of the former Soviet Central Asian republics. In
spite of Kyrgyzstan's diverse wildlife and stunning natural beauty, the nation remains little known, and, as yet, still on the frontier of international conservation efforts. The following report is the product of 12 months of research into the state of conservation and land-use in Kyrgyzstan. This effort was funded by the Fulbright Commission of the U.S. State Department, and represents the most recent findings of the author's personal environmental journey through Inner Asia, which began in 1999. When I first started my preliminary research for this project, I was extremely surprised to learn that, even though the Tian Shan Range has tremendous ecological significance for conservation efforts in middle Asia, there wasn't a single major international conservation organization with an office in the former Soviet Central Asian republics. Even more surprising was how little awareness there is of conservation issues in the Tian Shan region amongst conservation workers in neighboring areas who are attempting to preserve similar species assemblages and ecosystems to those found in the Tian Shan. Given this lack of awareness, and the great potential for the international community to make a positive contribution towards improving the current state of biodiversity conservation in Kyrgyzstan and Central Asia, I have summarized my findings on protected areas and conservation in Kyrgyzstan and the Tian Shan of Kazakhstan, Uzbekistan, and Xinjiang in the chapters below. The report begins with some brief background information on geography and society in the Kyrgyz Republic, followed by an overview of biodiversity and the state of conservation in the nation, which at the present time closely parallels the state of conservation in the other former Soviet Central Asian republics. Part IV of the report provides a catalog of all major protected areas in Kyrgyzstan and the other Tian Shan nations, followed by a list of sites in Kyrgyzstan that are as yet unprotected but merit protection. In the appendices the reader will find fairly comprehensive species lists of flora and fauna found in the Kyrgyz Republic, including lists of mammals, birds, fish, reptiles, amphibians, trees and shrubs, wildflowers, and endemic plants. In addition, a draft paper on the history and current practice of pastoral nomadism in Kyrgyzstan has been included in Appendix A. While the research emphasis for this study was on eastern Kyrgyzstan, over the course of the study the author did have the opportunity to make brief journeys to southern Kyrgyzstan, Uzbekistan, Kazakhstan, and Xinjiang. While falling short of being a definitive survey of protected areas of the Tian Shan, the informational review which follows is the first attempt at bringing the details of conservation efforts throughout the entire Tian Shan Range together in one place. It is hoped that this summary of biodiversity and conservation in the Tian Shan will generate interest in the region amongst conservationists, and help increase efforts to protect this surprisingly unknown range that forms an island of meadows, rivers, lakes, and forests in the arid heart of Asia. Keywords: Report; protected; protected areas; protected area; protected-areas; protected-area; areas; area; biodiversity; conservation; Kyrgyzstan; Tian; Tian-Shan; shan; Pamir-Alai; mountains; mountain; Kazakhstan; Uzbekistan; China; environmental; study; former; soviet; central; Central Asia; asia; land; Forest; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; Chinese; range; republic; wildlife; International; research; land-use; land use; recent; inner; project; ecological; Middle; Middle Asia; Organization; awareness; region; preserve; species; ecosystems; ecosystem; potential; community; Biodiversity conservation; Xinjiang; information; Kyrgyz; Kyrgyz-Republic; protection; flora; fauna; mammals; birds; reptiles; amphibians; endemic; plants; plant; history; Southern; survey; protect; river; heart
|
Filla, M., Lama, R. P., Filla, T., Heurich, M., Balkenhol, N., Waltert, M., Khorozyan, I. (2022). Patterns of livestock depredation by snow leopards and effects of intervention strategies: lessons from the Nepalese Himalaya. Wildlife Research, .
Abstract: Context: Large carnivores are increasingly threatened by anthropogenic activities, and their protection is among the main goals of biodiversity conservation. The snow leopard (Panthera uncia) inhabits high-mountain landscapes where livestock depredation drives it into conflicts with local people and poses an obstacle for its conservation.
Aims: The aim of this study was to identify the livestock groups most vulnerable to depredation, target them in implementation of practical interventions, and assess the effectiveness of intervention strategies for conflict mitigation. We present a novel attempt to evaluate intervention strategies for particularly vulnerable species, age groups, time, and seasons. Methods: In 2020, we conducted questionnaire surveys in two regions of the Annapurna Conservation Area, Nepal (Manang, n = 146 respondents and Upper Mustang, n = 183). We applied sample comparison testing, Jacobs’ selectivity index, and generalised linear models (GLMs) to assess rates and spatio-temporal heterogeneity of depredation, reveal vulnerable livestock groups, analyse potential effects of applied intervention strategies, and identify husbandry factors relevant to depredation. Key results: Snow leopard predation was a major cause of livestock mortality in both regions (25.4–39.8%), resulting in an estimated annual loss of 3.2–3.6% of all livestock. The main intervention strategies (e.g. corrals during night-time and herding during daytime) were applied inconsistently and not associated with decreases in reported livestock losses. In contrast, we found some evidence that dogs, deterrents (light, music playing, flapping tape, and dung burning), and the use of multiple interventions were associated with a reduction in reported night-time depredation of yaks. Conclusions and implications: We suggest conducting controlled randomised experiments for quantitative assessment of the effectiveness of dogs, deterrents, and the use of multiple interventions, and widely applying the most effective ones in local communities. This would benefit the long-term co-existence of snow leopards and humans in the Annapurna region and beyond. |
Fox, J., Nurbu, C., Bhatt, S., & Chandola, A. (1994). Wildlife conservation and land-use changes in the Transhimalayan region of Ladakh, India (Vol. 14).
Abstract: Changes in economy and land use are under way in the Indian Transhimalayan region of Ladakh, creating both negative and positive prospects for wildlife conservation in this sparsely populations and previously remote area. New livestock breeds, irrigation developments, farming practices, foreign tourists, and a large military presence are changing the way people view and use the mountainous land that surrounds them. With only 0.3% of the land currently arable, changes in wildlife and natural resource conservation are most apparent on Ladakh's extensive rangelands which are apparently undergoing a redistribution of use associated with social changes and recently introduced animal husbandry and farming practices. International endangered species such as the snow leopard, several wild ungulates, and the black-necked crane provide special incentive for conservation efforts in what are some of the best remaining natural areas in the mountainous regions to the north of the Himalayan crest. The success of newly created protected areas for wildlife conservation in Ladakh rests on an understanding of the effects of various development directions, a commitment to environmentally sensitive development amid the many competing demands on Ladakh's natural resources, conservation laws appropriate to human needs, and a clear recognition that solutions can be neither directly adaptable from other mountainous areas nor even widely applicable across the Himalayan region.
Keywords: conservation; India; Ladakh; land use; livstock; protected area; transhimalayan; Transhimalayan-Region
|
Fox, J. L., & Nurbu, C. (1990). Hemis, a national park for snow leopards in India's Trans-Himalaya. Int.Pedigree Book of Snow Leopards, 6, 71–84. |
Freeman, H. (1979). Phantom cat. Puget Soundings, , 8–13. |
Freeman, H. (1980). Breeding and behavior of the snow leopard. |
Hacker, C., Atzeni, L., Munkhtsog, B., Munkhtsog, B., Galsandorj, N., Zhang, Y., Liu, Y., Buyanaa, C., Bayandonoi, G., Ochirjav, M., Farrington, J. D., Jevit, M., Zhang, Y., Wu, L. Cong, W., Li, D., Gavette, C., Jackson, R., Janecka, J. E. (2022). Genetic diversity and spatial structures of snow leopards (Panthera uncia) reveal proxies of connectivity across Mongolia and northwestern China. Landscape Ecology, , 1–19.
Abstract: Understanding landscape connectivity and population genetic parameters is imperative for threatened species management. However, such information is lacking for the snow leopard (Panthera uncia). This study sought to explore hierarchical snow leopard gene flow patterns and drivers of genetic structure in Mongolia and China. A total of 97 individuals from across Mongolia and from the north-eastern edge of the Qinghai-Tibetan Plateau in Gansu Province to the middle of Qinghai Province in China were genotyped across 24 microsatellite loci. Distance-based frameworks were used to determine a landscape scenario best explaining observed genetic structure. Spatial and non-spatial methods were used to investigate fine-scale autocorrelation and similarity patterns as well as genetic structure and admixture. A genetic macro-division between populations in China and Mongolia was observed, suggesting that the Gobi Desert is a substantial barrier to gene flow. However, admixture and support for a resistance-based mode of isolation suggests connective routes that could facilitate movement. Populations in Mongolia had greater connectivity, indicative of more continuous habitat. Drivers of genetic structure in China were difficult to discern, and fine-scale sampling is needed. This study elucidates snow leopard landscape connectivity and helps to prioritize conservation areas. Although contact zones may have existed and occasional crossings can occur, establishing corridors to connect these areas should not be a priority. Focus should be placed on maintaining the relatively high connectivity for snow leopard populations within Mongolia and increasing research efforts in China.
|
Hochstrasser, K., Wachter, E., Reisinger, P. W., Greim, M., Albrecht, G. J., & Gebhard, W. (1993). Amino acid sequences of mammalian kazal-type proteinase inhibitors from salivary glands. Comp Biochem Physiol B, 106(1), 103–108.
Abstract: 1. The amino acid sequences of bikazins (the double-headed Kazal-type proteinase inhibitors from submandibular glands) isolated from the snow leopard (Unica unica), the European mink (Mustela lutreola), and the European pine marten (Martes martes) were determined. 2. N-terminal domains of bikazins are characterized by a cysteine residue spacing that differs from that of C-terminal domains of bikazins and other Kazal-type proteinase inhibitor domains. 3. N-terminal sequences of bikazins seem to be specific for, and highly conserved within, each Carnivora family.
Keywords: Amino; Acid; Sequence; Animal; Carnivora; Comparative; study; Cysteine; chemistry; Glycosylation; Mink; Molecular; Data; Protease; Inhibitors; Salivary; Proteins; species; Specificity; Submandibular; Gland; Trypsin; Inhibitor; Kazal; Pancreatic; browse; 200
|
International Snow Leopard Trust. (2000). Snow Leopard News Summer 2000. Seattle, WA: Islt. |
International Snow Leopard Trust. (2001). Snow Leopard News Fall 2001. Seattle, WA: Islt.
Keywords: seattle; fund-raising; volunteers; annual-appeal; Woodland-Park-Zoo; Tserendeleg; Mongolia; Macne; Islt; Pakistan; Afganastan; Malik; September-11th; war; conservation; China; Slims; Tnc; Yunnan; Slss; Snow-Leopard-Survival-Summit; Sullenberger; Munktsog; irbis-enterprises; Cnn; Abc; tourism; travel; crafts; Dolijinsuren; browse; 4340
|
International Snow Leopard Trust. (2001). Snow Leopard News Spring 2001. Seattle, WA: Islt.
Keywords: Annual-Appeals-Fund; conservation-programs; populations; Kyrgyz-Republic; Soviet-Union; China; India; Mongolia; Pakistan; Charudutt; incentive; Woodland-Park-Zoo; cub; Death; veterinary; medicine; Bayarjargal; raffle; Dorothy-McLean; volunteers; poaching; hunting; pelts; furs; bones; herders; killing; livestock; browse; 4360
|
International Snow Leopard Trust. (2001). Snow Leopard News Summer 2001. Seattle, WA: Islt.
Keywords: Islt; Woodland-Park-Zoo; seattle; Snow-leoaprd-Summit; Slss; threats; conservation; donation; field-study; surveys; Pakistan; Kyrgastan; Kyrgyz-Republic; India; research; staff; expansion; programs; education; herders; interviews; funding; travel; livestock; browse; 4350
|
International Snow Leopard Trust. (2002). Snow Leopard News, Spring 2002. Seattle, Washington: Islt. |
Izold, J. (2008). Snow Leopard Enterprise: a conservation project that saves an endangered species and supports needy families. Anim.Keepers' Forum, 9(5), 359–364.
Abstract: The World Conservation Union listed the snow leopard (Uncia uncia) as endangered in 1974. With as few as 3,500 snow leopards left in the wild, scientists placed the snow leopard on the IUCN Red List of critically endangered species shared by animals such as the giant panda and tiger. In an effort to save the snow leopard from extinction, former zoo employee Helen Freeman founded the Snow Leopard Trust in 1981. The Snow Leopard Trust works to save this elusive cat by incorporating community-based conservation projects. One of these project Leopard Enterprise (SLE), impacts poverty stricken communities in Mongolia, Kyrgyz Republic, and Pakistan. It assists over 300 families in its conservation efforts. The economic incentives provided via SLE have led participating communities not to harm the snow leopard or its prey, and to practice sustainable herding. Since the project began in 1997, the number of snow leopards harmed around the communities' territories has dropped to near zero. Additionally, the annual income of families that utilize the benefits of SLE has increased by 25% to 40%. SLE creates this economic benefit by providing the training and equipment necessary to make desirable products from the wool of herd animals. Snow Leopard Trust then purchases these handicraft items from the local people and them globally. Zoos can expand their conservation efforts by simply offering these items in their gift shops. Woodland Park Zoo (WPZ) was the first zoological institution to sell the products, and WPZ continues to generate revenue from them. SLE is a golden opportunity for zoos to increase revenue, assist poor families, and save an endangered species and fragile ecosystem.
Keywords: snow; snow leopard; snow-leopard; leopard; conservation; project; endangered; endangered species; endangered-species; species; Support; union; uncia; Uncia uncia; Uncia-uncia; snow leopards; snow-leopards; leopards; wild; Iucn; Animals; Animal; tiger; extinction; former; zoo; Freeman; trust; work; cat; community-based; projects; Sle; impact; poverty; community; Mongolia; Kyrgyz; Kyrgyz-Republic; republic; Pakistan; 300; economic; incentives; prey; sustainable; herding; number; territory; income; training; products; wool; local; local people; people; zoos; Woodland-Park-Zoo; park; zoological; ecosystem
|
Jackson, R., & Ahlborn, G. (1990). The role of protected areas in Nepal in maintaining viable populations of snow leopards. Int.Ped.Book of Snow Leopards, 6, 51–69. |
Jafri, R. H., & Shah, F. (1994). The role of education and research in the conservation of snow leopard and its habitat in Northern Pakistan. In J.L.Fox, & D.Jizeng (Eds.), (pp. 273–277). Usa: Islt.
Keywords: Pakistan; Khunjerab; protected-areas; parks; reserves; refuge; education; ibex; Marco-Polo-sheep; hunting; predator; prey; diet; marmot; activity; Nepal; Chitral-Gol; war; land-use; climate; blue-sheep; home-range; Disease; blue; sheep; browse; Marco-Polo; protected; area; areas; land use; land; 3120
|
Johansson, O., Alexander, J. S., Lkhagvajav, P., Mishra, C., Samelius, G. (2024). Natal dispersal and exploratory forays through atypical habitat in the mountain-bound snow leopard. Ecology, 2024(e4264), 1–4.
Abstract: Understanding how landscapes affect animal movements is key to effective conservation and management (Rudnick et al., 2012; Zeller et al., 2012). Movement defines animal home ranges, where animals generally access resources such as food and mates, and also their dispersal and exploratory forays. These movements are important for individual survival and fitness through genetic exchange within and between populations and for colonization of unoccupied habitats (Baguette et al., 2013; MacArthur & Wilson, 1967). Dispersal and exploratory movements typically occur when young animals leave their natal range and establish more permanent home ranges (Greenwood, 1980; Howard, 1960). In mammals, natal dispersal of males is usually more frequent and happens over greater distances compared with that of females (Clobert et al., 2001; Greenwood, 1980).
|