|
Ahmad, A. (1997). Community-Based Natural Resources Management in Northern Pakistan. In R.Jackson and A.Ahmad (Ed.), (pp. 148–154). Lahore, Pakistan: Islt.
|
|
|
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
|
|
|
Allen, P. (2001). Irbis Enterprises: A Project of the International Snow Leopard Trust (Vol. 6). Columbus Zoo and Aquarium.
|
|
|
Bagchi, S., Mishra, C., & Bhatnagar, Y. (2004). Conflicts between traditional pastoralism and conservation of Himalayan ibex (Capra sibirica) in the Trans-Himalayan mountains. Animal Conservation, 7, 121–128.
Abstract: There is recent evidence to suggest that domestic livestock deplete the density and diversity of wild herbivores in the cold deserts of the Trans-Himalaya by imposing resource limitations. To ascertain the degree and nature of threats faced by Himalayan ibex (Capra sibirica) from seven livestock species, we studied their resource use patterns over space, habitat and food dimensions in the pastures of Pin Valley National Park in the Spiti region of the Indian Himalaya. Species diet profiles were obtained by direct observations. We assessed the similarity in habitat use and diets of ibex and livestock using Non-Metric Multidimensional Scaling. We estimated the influence of the spatial distribution of livestock on habitat and diet choice of ibex by examining their co-occurrence patterns in cells overlaid on the pastures. The observed co-occurrence of ibex and livestock in cells was compared with null-models generated through Monte Carlo simulations. The results suggest that goats and sheep impose resource limitations on ibex and exclude them from certain pastures. In the remaining suitable habitat, ibex share forage with horses. Ibex remained relatively unaffected by other livestock such as yaks, donkeys and cattle. However, most livestock removed large amounts of forage from the pastures (nearly 250 kg of dry matter/day by certain species), thereby reducing forage availability for ibex. Pertinent conservation issues are discussed in the light of multiple-use of parks and current socio-economic transitions in the region, which call for integrating social and ecological feedback into management planning.
|
|
|
Bhatnagar, Y. V., Stakrey, R. W., & Jackson, R. (2000). A Survey of Depredation and Related Wildlife-Human Conflicts in Hemis National Park, Ladakh (India) (Vol. xvi). Seattle: Islt.
|
|
|
Harris, R. B. (1994). A note on snow leopards and local people in Nangqian County, Southern Qinghai Province. In J.L.Fox, & D. Jizeng (Eds.), (pp. 79–84). Usa: Islt.
|
|
|
Jackson, R. (1990). Threatened wildlife, crop, and livestock depredation and grazing in the Makalu-Barun Conservation Area.
|
|
|
Khanyari, M., Suryawanshi, K. R., Milner-Gulland, E. J., Dickinson, E., Khara, A., Rana, R. S., Vineer, H. R., Morgan, E. R. (2021). Predicting Parasite Dynamics in Mixed-Use Trans-Himalayan Pastures to Underpin Management of Cross-Transmission Between Livestock and Bharal. Frontiers in Veterinary Science, 8(714241), 1–21.
Abstract: The complexities of multi-use landscapes require sophisticated approaches to addressing disease transmission risks. We explored gastro-intestinal nematode (GINs) infections in the North India Trans-Himalayas through a socio-ecological lens, integrating parasite transmission modelling with field surveys and local knowledge, and evaluated the likely effectiveness of potential interventions. Bharal (blue sheep; Pseudois nayaur), a native wild herbivore, and livestock share pasture year-round and livestock commonly show signs of GINs infection. While both wild and domestic ungulates had GINs infections, egg counts indicated significantly higher parasite burdens in bharal than livestock. However, due to higher livestock densities, they contributed more to the total count of eggs and infective larvae on pasture. Herders also reported health issues in their sheep and goats consistent with parasite infections. Model simulations suggested that pasture infectivity in this system is governed by historical pasture use and gradually accumulated larval development during the summer, with no distinct short-term flashpoints for transmission. The most effective intervention was consequently predicted to be early-season parasite suppression in livestock using temperature in spring as a cue. A 1-month pause in egg output from livestock could lead to a reduction in total annual availability of infective larvae on pasture of 76%, potentially benefitting the health of both livestock and bharal. Modelling suggested that climate change over the past 33 years has led to no overall change in GINs transmission potential, but an increase in the relative influence of temperature over precipitation in driving pasture infectivity. Our study provides a transferable multi-pronged approach to investigating disease transmission, in order to support herders’ livelihoods and conserve wild ungulates.
|
|
|
Kohli, K., Sankaran, M., Suryawanshi, K. R., Mishra, C. (2014). A penny saved is a penny earned: lean season foraging strategy of an alpine ungulate. Animal Behaviour, (92), 93–100.
Abstract: Lean season foraging strategies are critical for the survival of species inhabiting highly seasonal environments
such as alpine regions. However, inferring foraging strategies is often difficult because of
challenges associated with empirically estimating energetic costs and gains of foraging in the field. We
generated qualitative predictions for the relationship between daily winter foraging time, body size and
forage availability for three contrasting foraging strategies including time minimization, energy intake
maximization and net energy maximization. Our model predicts that for animals employing a time
minimization strategy, daily winter foraging time should not change with body size and should increase
with a reduction in forage availability. For energy intake maximization, foraging time should not vary
with either body size or forage availability. In contrast, for a net energy maximization strategy, foraging
time should decrease with increase in body size and with a reduction in forage availability. We contrasted
proportion of daily time spent foraging by bharal, Pseudois nayaur, a dimorphic grazer, across
different body size classes in two high-altitude sites differing in forage availability. Our results indicate
that bharal behave as net energy maximizers during winter. As predicted by the net energy maximization
strategy, daily winter foraging time of bharal declined with increasing body size, and was lower in the
site with low forage availability. Furthermore, as predicted by our model, foraging time declined as the
winter season progressed. We did not find support for the time minimizing or energy intake maximizing
strategies. Our qualitative model uses relative rather than absolute costs and gains of foraging which are
often difficult to estimate in the field. It thus offers a simple way to make informed inferences regarding
animal foraging strategies by contrasting estimates of daily foraging time across gradients of body size
and forage availability.
|
|
|
Kreuzberg, E., Esipov, A., Bykova, E., & Vashetko, E. (2000). Number, Distribution and Status of Habitats for Snow Leopard in Gissar Nature Reserve and Neighboring Areas (Vol. xvi). Seattle, Wa: Islt.
|
|