Home | << 1 2 3 4 5 6 >> |
(1978). Rare Animals and their Protection in the USSR.
Abstract: It described categories of threat (Category A and Category B). Snow leopard was assessed under Category A the species whose numbers and habitats have sharply diminished and are continuing to diminish as a consequence of direct persecution, destruction of their habitat or other causes. The snow leopard (Pardus uncia) inhabits the mountains of the Tien Shan range, Tarbagatai, Saur, Altai and the Sayans. Exploitation of mountain areas and depletion of stocks of wild ungulates (Siberian mountain goats and wild sheep) have led to a sharp reduction in the number of snow leopards. It is estimated that today only about one thousand leopards are left, and they have accordingly been placed under complete protection. Hunting and selective shooting are everywhere prohibited. Catching leopards is regulated by the articles of the international convention restricting trade in rare species of plants and animals.
Keywords: Uzbekistan; categories of threat; rare species; snow leopard; distribution; threats.; 8030; Russian
|
Ahlborn, G., & Jackson, R. M. (1988). Marking in Free-Ranging Snow Leopards in West Nepal: A preliminary assesment. In H.Freeman (Ed.), (pp. 25–49). India: Snow Leopard Trust and the Wildlife Institute of India.
Abstract: Describes and Quantifies snow leopard marking behaviour, based primarily on sign, gatherd during a four year study in Nepal. Emphasis is on scrapes and spray markings, detailing their frequency of occurence realtive to habitat characteristics and season. Both sexes mark intensively, sign abundance is associated with intensity of use, and sign is concentrated along breaks in terrain.
|
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; region; Nepal; Report; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; 1960; endangered; Sagarmatha; High; Himalaya; tourism; impact; establishment; national; national park; National-park; park; 1980; area; Tibet; surveys; survey; status; Cats; cat; prey; research; project; sign; transects; transect; length; valley; Response; hunting; recovery; Himalayan; tahr; density; densities; range; pugmarks; sighting; 60; study; population; predators; predator; structure; prey species; prey-species; species; populations; mortality; effects; predation; population dynamics
|
Ale, S. B. (1997). The Annapurna Conservation Area Project: A Case Study of an Integrated Conservation and Development Project in Nepal. In R. Jackson, & A. Ahmad (Eds.), (pp. 155–169). Lahore, Pakistan: Islt.
Keywords: conservation; annapurna; park; parks; reserve; reserves; refuge; management; habitat; livestock; herders; herder; Acap; education; community-development; tourism; women; protected-area; browse; community; development; protected; area; 2960
|
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
Keywords: Nepal; recovery; Sagarmatha Mount Everest National Park; snow leopard; Uncia uncia; surveys; survey; snow; snow-leopard; leopard; uncia; Uncia-uncia; valley; Sagarmatha; national; national park; National-park; park; using; information; management; system; research; transects; transect; sign; areas; area; snow leopards; snow-leopards; leopards; 40; Himalayan; tahr; musk; musk-deer; deer; location; recent; species; grazing; land; Forest; habitat; domestic; wild; ungulates; ungulate; livestock; tourism; development; traditional; land use; land-use; use; wildlife
|
Ale, S. B., Brown, J.S. (2009). Prey behavior leads to predator: a case study of the Himalayan tahr and the snow leopard in Sagarmatha (Mt. Everest) National Park, Nepal. Israel Journal of Ecology & Evolution, 55(4), 315–327.
Abstract: Rare, elusive predators offer few sightings, hindering research with small sample sizes and lack of experimentation. While predators may be elusive, their prey are more readily observed. Prey respond to the presence of a predator, and these fear responses may have population- and community-level consequences. Anti-predator behaviors, such as vigilance, allow us to sidestep the difficulty of direct field studies of large predators by studying them indirectly. Here we used a behavioral indicator, the vigilance behavior of the Himalayan tahr, the snow leopard’s main local prey, to reveal the distribution and habitat use of snow leopards in the Mt. Everest region of Nepal. We combined techniques of conventional field biology with concepts of foraging theory to study prey behavior in order to obtain insights into the predator’s ecology. The Himalayan tahr’s vigilance behavior correlates with the distribution of snow leopard signs. Tahr actually led us to six sightings of snow leopards. We conclude that behavioral indicators provided by prey offer a valuable tool for studying and monitoring stealthy and rare carnivores.
|
Allabergenov E. (1991). The cat family. 1991.
Abstract: It provides field signs and brief comparative characteristic of cat species in Uzbekistan, five of which are included in the Red Data Book of Uzbekistan and the USSR: lynx, caracal, manul, snow leopard and cheetah. Snow leopard is protected in the Zaamin, Chatkal, and Gissar nature reserves. A snow leopard female bears up to five cubs (normally two three) once in two years. Gestation period is 90 days. Female suckles her cubs until they reach the age of three four months.
Keywords: Uzbekistan; Red Data book; endangered mammals; Cats; snow leopard; 5950; Russian
|
Allen, P. (2001). Irbis Enterprises: A Project of the International Snow Leopard Trust (Vol. 6). Columbus Zoo and Aquarium. |
Andrienkov V.I. (1990). The Besh Aral nature reserve.
Abstract: It provides general information about the Besh Aral nature reserve (Kyrgyzstan), its physico-geographical characteristic, and description of flora and fauna. The predatory mammals are represented by 12 species. The rare predators are brown bear, snow leopard, lynx, and manul. Snow leopard inhabits the highlands of Chatkal depression and the upper-river Kara-Toko. In the past, snow leopards were seen more often.
Keywords: Kyrgyzstan; Besh Aral nature reserve; location; climate; soil; flora; fauna; snow leopard.; 6030; Russian
|
Anwar, M., Jackson, R., Nadeem, M., Janecka, J., Hussain, S., Beg, M., Muhammad, G., and Qayyum, M. (2011). Food habits of the snow leopard Panthera uncia (Schreber, 1775) in Baltistan, Northern Pakistan. European Journal of Wildlife Research, (3 March), 1–7.
Abstract: The snow leopard (Panthera uncia) inhabits the high, remote mountains of Pakistan from where very little information is available on prey use of this species. Our study describes the food habits of the snow leopard in the Himalayas and Karakoram mountain ranges in Baltistan, Pakistan. Ninety-five putrid snow leopard scats were collected from four sites in Baltistan. Of these, 49 scats were genetically confirmed to have originated from snow leopards. The consumed prey was identified on the basis of morphological characteristics of hairs recovered from the scats. It was found that most of the biomass consumed (70%) was due to domestic livestock viz. sheep (23%), goat (16%), cattle (10%), yak (7%), and cattle–yak hybrids (14%). Only 30% of the biomass was due to wild species, namely Siberian ibex (21%), markhor (7%), and birds (2%). Heavy predation on domestic livestock appeared to be the likely cause of conflict with the local inhabitants. Conservation initiatives should focus on mitigating this conflict by minimizing livestock losses.
|
Aromov B. (1995). The Biology of the Snow Leopard in the Hissar Nature Reserve.
Abstract: The work contains data on biology snow leopard in Hissar nature reserve, Uzbekistan. The number of snow leopards in this reserve has increased from two or four in 1981 to between 13 and 17 individuals in 1994. Since 1981, snow leopards have been sighted 72 times and their tracks or pugmarks 223 times. In the Hissar Nature Reserve snow leopards largely feed on ibex. Over a period of 14 years, 92 kills and remains of ibex aged from one to thirteen years of age have been examined. Other records of predation, by the number of events observed, include 33 cases of juvenile and mature horses, 25 long-tailed marmot (Marmota caudata). 18 Himalayan snowcock (Tetraogallus himalayemis), 17 domestic goat, 13 wild boar (Sus scrofa), five domestic sheep and three incidents involving cattle. Twenty-two attacks on domestic flocks were reported, and these occurred during both the daytime and at night. Snow leopards usually mate between the 20th of February and March 20th. The offspring are born in late April to May, and there are usually two per litter (23 encounters), although a single litter of three has also been recorded.
Keywords: Uzbekistan; snow leopard; Hissar ridge; Hissar nature reserve; number; diet; breeding.; 6070; Russian; work; Data; biology; snow; snow-leopard; leopard; nature; reserve; snow leopards; snow-leopards; leopards; times; tracks; pugmarks; Feed; ibex; kills; kill; Age; records; predation; Case; horses; horse; marmot; Himalayan; domestic; goat; wild; wild boar; sheep; Cattle; attack
|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively. Keywords: Report; mortality; blue; blue sheep; blue-sheep; sheep; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; Dhorpatan; hunting; reserve; Nepal; biodiversity; research; training; snow; snow leopard; snow-leopard; leopard; conservation; program; population; Population-Density; density; densities; change; Sex; study; area; High; poaching; Pressure; reducing; number; predators; predator; poison; wolf; wolves; canis; Canis-lupus; lupus; wild; wild boar; prey; prey species; prey-species; species; scats; scat; value; fox; cover; deer; diet; leopards; pika; snow leopards; snow-leopards; soil; Relationship
|
Atzeni, L., Cushman, S. A., Bai, D., Wang, J., Chen, P., Shi,
K., Riordan, P. (2020). Meta-replication, sampling bias, and multi-scale model selection:
A case study on snow leopard (Panthera uncia) in western China. Ecology and Evolution, , 1–27.
Abstract: Replicated multiple scale species distribution models (SDMs)
have become increasingly important to identify the correct variables determining species distribution and their influences on ecological responses. This study explores multi-scale habitat relationships of the snow leopard (Panthera uncia) in two study areas on the Qinghai–Tibetan Plateau of western China. Our primary objectives were to evaluate the degree to which snow leopard habitat relationships, expressed by predictors, scales of response, and magnitude of effects, were consistent across study areas or locally landcape-specific. We coupled univariate scale optimization and the maximum entropy algorithm to produce multivariate SDMs, inferring the relative suitability for the species by ensembling top performing models. We optimized the SDMs based on average omission rate across the top models and ensembles’ overlap with a simulated reference model. Comparison of SDMs in the two study areas highlighted landscape-specific responses to limiting factors. These were dependent on the effects of the hydrological network, anthropogenic features, topographic complexity, and the heterogeneity of the landcover patch mosaic. Overall, even accounting for specific local differences, we found general landscape attributes associated with snow leopard ecological requirements, consisting of a positive association with uplands and ridges, aggregated low-contrast landscapes, and large extents of grassy and herbaceous vegetation. As a means to evaluate the performance of two bias correction methods, we explored their effects on three datasets showing a range of bias intensities. The performance of corrections depends on the bias intensity; however, density kernels offered a reliable correction strategy under all circumstances. This study reveals the multi-scale response of snow leopards to environmental attributes and confirms the role of meta-replicated study designs for the identification of spatially varying limiting factors. Furthermore, this study makes important contributions to the ongoing discussion about the best approaches for sampling bias correction. |
Bagchi, S., Mishra, C., & Bhatnagar, Y. (2004). Conflicts between traditional pastoralism and conservation of Himalayan ibex (Capra sibirica) in the Trans-Himalayan mountains. Animal Conservation, 7, 121–128.
Abstract: There is recent evidence to suggest that domestic livestock deplete the density and diversity of wild herbivores in the cold deserts of the Trans-Himalaya by imposing resource limitations. To ascertain the degree and nature of threats faced by Himalayan ibex (Capra sibirica) from seven livestock species, we studied their resource use patterns over space, habitat and food dimensions in the pastures of Pin Valley National Park in the Spiti region of the Indian Himalaya. Species diet profiles were obtained by direct observations. We assessed the similarity in habitat use and diets of ibex and livestock using Non-Metric Multidimensional Scaling. We estimated the influence of the spatial distribution of livestock on habitat and diet choice of ibex by examining their co-occurrence patterns in cells overlaid on the pastures. The observed co-occurrence of ibex and livestock in cells was compared with null-models generated through Monte Carlo simulations. The results suggest that goats and sheep impose resource limitations on ibex and exclude them from certain pastures. In the remaining suitable habitat, ibex share forage with horses. Ibex remained relatively unaffected by other livestock such as yaks, donkeys and cattle. However, most livestock removed large amounts of forage from the pastures (nearly 250 kg of dry matter/day by certain species), thereby reducing forage availability for ibex. Pertinent conservation issues are discussed in the light of multiple-use of parks and current socio-economic transitions in the region, which call for integrating social and ecological feedback into management planning.
Keywords: conflicts; traditional pastoralism; himalayan ibex; ibex; capra sibirica; trans-himalayan mountains; pin valley national park; spiti region; non-metric multidimensional scaling; snow leopard; wolf; wild dog; Lynx; wild ass; Tibetan argali; Tibetan antelope; Tibetan gazelle; urial; bharal; Pin River; pin valley; Parahio; goat; sheep; Cattle; horses; yaks; donkeys; diet; free-ranging horses; herded horses; grazing; 5290
|
Bekenov A.B. (2002). About the IUCN categories and criteria for animals inclusion in Red Data Books and lists (project INTAS 99-1483).
Abstract: Uncia uncia in Kazakhstan is defined as EN C 2a(i); D1. The International Red List (2000) attributes this species to EN C 2a, which is an example of concurrence in the assessments at regional and global levels.
Keywords: Kazakhstan; Red Data book; categories of threat; assessment; snow leopard.; 6220; Russian
|
Berezovikov N.N. (1990). The Markakol nature reserve.
Abstract: It provides general information about the Markakol nature reserve (Kazakhstan), physico-geographical characteristic, and description of flora and fauna. Snow leopards were noticed to enter the nature reserve from time to time, which seems to be very small for the predator to inhabit it permanently.
Keywords: Kazakhstan; Markakol nature reserve; location; climate; soil; flora; fauna; snow leopard.; 6250; Russian
|
Bhatnagar, Y. V. (2008). Relocation from wildlife reserves in the Greater and Trans-Himalayas: Is it necessary? (Vol. 6).
Abstract: The Greater and Trans-Himalayan tracts are cold deserts that have severe seasonal and resource scarce environments. Covering the bulk of Indian Himalayas, they are a rich repository of biodiversity values and ecosystem services. The region has a large protected area (PA) network which has not been completely effective in conserving these unique values. The human population densities are much lower (usually < 1 per sq km) than in most other parts of the country (over 300 to a sq km). However, even such small populations can come into conflict with strict PA laws that demand large inviolate areas, which can mainly be achieved through relocation of the scattered settlements. In this paper, I reason that in this landscape relocation is not a tenable strategy for conservation due to a variety of reasons. The primary ones are that wildlife, including highly endangered ones are pervasive in the larger landscape (unlike the habitat 'islands' of the forested ecosystems) and existing large PAs usually encompass only a small proportion of this range. Similarly, traditional use by people for marginal cultivation, biomass extraction and pastoralism is also as pervasive in this landscape. There does exist pockets of conflict and these are probably increasing owing to a variety of changes relating to modernisation. However, scarce resources, the lack of alternatives and the traditional practice of clear-cut division of all usable areas and pastures between communities make resettlement of people outside PAs extremely difficult. It is reasoned that given the widespread nature of the wildlife and pockets of relatively high density, it is important to prioritise these smaller areas for conservation in a scenario where they form a mosaic of small 'cores' that are more effectively maintained with local support and that enable wildlife to persist. These ideas have recently gained widespread acceptance in both government and conservation circles and may soon become part of national strategy for these areas.
|
Bohnett, E., Faryabi, S. P., Lewison, R., An, L., Bian, X., Rajabi, A. M., Jahed, N., Rooyesh, H., Mills, E., Ramos, S., Mesnildrey, N., Perez, C. M. S., Taylor, J., Terentyev, V., Ostrowski, S. (2023). Human expertise combined with artificial intelligence improves performance of snow leopard camera trap studies. Global Ecology & Conservation, 41(e02350), 1–13.
Abstract: Camera trapping is the most widely used data collection method for estimating snow leopard (Panthera uncia) abundance; however, the accuracy of this method is limited by human observer errors from misclassifying individuals in camera trap images. We evaluated the extent Whiskerbook (www.whiskerbook.org), an artificial intelligence (AI) software, could reduce this error rate and enhance the accuracy of capture-recapture abundance estimates. Using 439 images of 34 captive snow leopard individuals, classification was performed by five observers with prior experience in individual snow leopard ID (“experts”) and five observers with no such experience (“novices”). The “expert” observers classified 35 out of 34 snow leopard individuals, on average erroneously splitting one individual into two, thus resulting in a higher number than true individuals. The success rate of experts was 90 %, with less than a 3 % error in estimating the population size in capture-recapture modeling. However, the “novice” observers successfully matched 71 % of encounters, recognizing 25 out of 34 individuals, underestimating the population by 25 %. It was found that expert observers significantly outperformed novice observers, making statistically fewer errors (Mann Whitney U test P = 0.01) and finding the true number of individuals (P = 0.01). These differences were contrasted with a previous study by Johansson et al. 2020, using the same subset of 16 individuals from European zoos. With the help of AI and the Whiskerbook platform, “experts” were able to match 87 % of encounters and identify 15 out of 16 individuals, with modeled estimates of 16 ± 1 individuals. In contrast, “novices” were 63 % accurate in matching encounters and identified 12 out of 16 individuals, modeling 12 ± 1 individuals that underestimated the population size by 12 %. When comparing the performance of observers using AI and the Whiskerbook platform to observers performing the tasks manually, we found that observers using Whiskerbook made significantly fewer errors in splitting one individual into two (P = 0.04). However, there were also a significantly higher number of combination errors, where two individuals were combined into one (P = 0.01). Specifically, combination errors were found to be made by “novices” (P = 0.04). Although AI benefited both expert and novice observers, expert observers outperformed novices. Our results suggest that AI effectively reduced the misclassification of individual snow leopards in camera trap studies, improving abundance estimates. However, even with AI support, expert observers were needed to obtain the most accurate estimates.
|
Bohnett, E., Holmberg, J., Faryabi, S. P., An, L., Ahmad, B., Rashid, W., Ostrowski, S. (2023). Comparison of two individual identification algorithms for snow leopards (Panthera uncia) after automated detection. Ecological Informatics, 77(102214), 1–14.
Abstract: Photo-identification of individual snow leopards (Panthera uncia) is the primary data source for density estimation via capture-recapture statistical methods. To identify individual snow leopards in camera trap imagery, it is necessary to match individuals from a large number of images from multiple cameras and historical catalogues, which is both time-consuming and costly. The camouflaged snow leopards also make it difficult for machine learning to classify photos, as they blend in so well with the surrounding mountain environment, rendering applicable software solutions unavailable for the species. To potentially make snow leopard individual identification available via an artificial intelligence (AI) software interface, we first trained and evaluated image classification techniques for a convolutional neural network, pose invariant embeddings (PIE) (a triplet loss network), and compared the accuracy of PIE to that of the HotSpotter algorithm (a SIFT-based algorithm). Data were acquired from a curated library of free-ranging snow leopards taken in Afghanistan between 2012 and 2019 and from captive animals in zoos in Finland, Sweden, Germany, and the United States. We discovered several flaws in the initial PIE model, such as a small amount of background matching, that was addressed, albeit likely not fixed, using background subtraction (BGS) and left-right mirroring (LR) techniques which demonstrated reasonable accuracy (Rank 1: 74% Rank-5: 92%) comparable to the Hotspotter results (Rank 1: 74% Rank 2: 84%)The PIE BGS LR model, in conjunction with Hotspotter, yielded the following results: Rank-1: 85%, Rank-5: 95%, Rank-20: 99%. In general, our findings indicate that PIE BGS LR, in conjunction with HotSpotter, can classify snow leopards more accurately than using either algorithm alone.
|
Brem A.E. (1992). Irbis, or snow leopard (Felis uncia) (Vol. Vol.1. Mammals.).
Abstract: Snow leopard is met in the mountains of Turkistan, Altai, Bukhara, Pamir, Kashmir, and Tibet, and probably in South-East Siberia and along Sungari. In 1871, two animals were living in the Moscow Zoo Garden.
Keywords: snow leopard; distribution; identification features.; 6390; Russian
|
Brown, J. L., Wasser, S. K., Wildt, D. E., & Graham, L. H. (1994). Comparative Aspects of Steroid Hormone Metabolism and Ovarian Activity in Felids, Measured Noninvasively in Feces. Biol Reprod, 51(4), 776–786.
Abstract: Noninvasive fecal assays were used to study steroid metabolism and ovarian activity in several felid species. Using the domestic cat (Felis catus) as model, the excretory products of injected [14C]estradiol (E2) and [14C]progesterone (P4) were determined. Within 2 days, 97.0 +/- 0.6% and 96.7 +/- 0.5% of recovered E2 and P4 radioactivity, respectively, was found in feces. E2 was excreted as unconjugated estradiol and estrone (40%) and as a non-enzyme- hydrolyzable conjugate (60%). P4 was excreted primarily as non-enzyme- hydrolyzable, conjugated metabolites (78%) and as unconjugated pregnenolone epimers. A simple method for extracting fecal steroid metabolites optimized extraction efficiencies of the E2 and P4 excretion products (90.1 +/- 0.8% and 87.2 +/- 1.4%, respectively). Analysis of HPLC fractions of extracted fecal samples from the radiolabel-injected domestic cats revealed that E2 immunoreactivity coincided primarily with the unconjugated metabolized [14C]E2 peak, whereas progestogen immunoreactivity coincided with a single conjugated epimer and multiple unconjugated pregnenolone epimers. After HPLC separation, similar immunoreactive E2 and P4 metabolite profiles were observed in the leopard cat (F. bengalensis), cheetah (Acinonyx jubatus), clouded leopard (Neofelis nebulosa), and snow leopard (Panthera uncia). Longitudinal analyses demonstrated that changes in fecal E2 and P4 metabolite concentrations reflected natural or artificially induced ovarian activity. For example, severalfold increases in E2 excretion were associated with overt estrus or exogenous gonadotropin treatment, and elevated fecal P4 metabolite concentrations occurred during pregnant and nonpregnant (pseudopregnant) luteal phases. Although overall concentrations were similar, the duration of elevated fecal P4 metabolites during pseudopregnancy was approximately half that observed during pregnancy. In summary, steroid metabolism mechanisms appear to be conserved among these physically diverse, taxonomically related species. Results indicate that this hormone-monitoring approach will be extremely useful for elucidating the hormonal regulatory mechanism associated with the reproductive cycle, pregnancy, and parturition of intractable and endangered felid species.
Keywords: Animal; Carbon; Radioisotopes; Carnivora; Cats; Chromatography; High; Pressure; Liquid; Comparative Study; Estradiol; metabolism; Estrone; feces; chemistry; Female; Ovary; physiology; Pregnancy; Progesterone; Pseudopregnancy; Support; Non-U.S.Gov't; browse; non; government; gov't; us; 170
|
Cecil, R. (1988). Educational Programming For Snow Leopard Conservation. In H.Freeman (Ed.), (pp. 247–248). India: International Snow Leopard Trust and Wildlife Institute of India. |
Chakraborty, R. E., & Chakraborty, S. (1996). Identification of dorsal guard hairs of Indian species of the genus Panthera Oken (Carnivora: Felidae). Mammalia, 60(3), 480.
Abstract: Dorsal guard hairs of four living Indian species of the genus Panthera, viz. P. tigris, P. leo, P. pardus and P. uncia have been studied. It is found that the characters are somewhat overlapping, but identification of the species may be possible from the combination of characters.
|
Chaudhuri, S., Mukherjee, S. K., Chatterjee, A., & Ganguli, J. L. (1992). Isolation of P multocida F-3, 4 from a stillborn snow leopard. Vet Rec, 130(2), 36. |
Cherkasova M.V. (1982). Predators.
Abstract: Among species included in the Red Data Book of the USSR, predators occupy the first place; of them, unconditional leadership belongs the cat family species. Nine of eleven species of the family are referred to as rare and endangered ones. In the past snow leopard (Uncia uncia) inhabited all mountains on the south of the USSR from Tien Shan and Pamir to Transbaikalia. Now it no longer inhabits many of its previous habitats and has become rare, everywhere. Its total population in the USSR is no more than 1000 animals. At the beginning of XX century there were cases that such an amount of snow leopard (i.e. 1,000) was hunted during one year. Until recently, hunting the species was allowed all year round and even encouraged.
Keywords: Ussr; Red Data book; mammals; carnivores; Cats; snow leopard.; 6420; Russian
|