Home | << 1 2 >> |
(1998). Biological diversity conservation. National strategy and action plan of the Republic of Uzbekistan.
Abstract: The National strategy and action plan of the Republic of Uzbekistan was signed on April 1, 1998. Snow leopard was included in the list of rare and endangered animal species and referred to category 2 a rare, not endangered species. It is distributed in highlands of the West Tien Shan and Pamiro-Alay. Its population is 30-50 animals. Snow leopard is protected in the Chatkal, Gissar nature reserve, and Ugam-Chatkal national park.
|
(2002). Biological resources.
Abstract: It provides a summary of plant and animal resources in Uzbekistan. Among 15,000 animal species, 664 are vertebrate species including 424 bird, 97 mammal, 83 fish, 59 reptile and three amphibian species. Snow leopard, snow cock, ibex, and other species are typical for highlands.
Keywords: Uzbekistan; biodiversity; vertebrates; snow leopard.; 6290; Russian
|
Abdunazarov B.B. (2002). Biodiversity of mammals in the Western Tien Shan and its conservation.
Abstract: The mammal fauna of Uzbekistan's mountain ecosystems is represented by some 60 species. Data on mammal species composition in the Western Tien Shan (48 species) and Pamir-Alai (57 species) is given. A quantity of species endemic to the mountainous ecosystems of Uzbekistan is defined. Quantities of nine rare species inhabiting the mountain ecosystems, including snow leopard, are given. Number of snow leopard in Pamir-Alai and the Western Tien Shan is estimated to be 30-50 animals.
|
Ale, S., & Whelan, C. (2008). Reappraisal of the role of big, fierce predators.
Abstract: The suggestion in the early 20th century that top predators were a necessary component of ecosystems because they hold herbivore populations in check and promote biodiversity was at Wrst accepted and then largely rejected. With the advent of Evolutionary Ecology and a more full appreciation of direct and indirect effects of top predators, this role of top predators is again gaining acceptance. The previous views were predicated upon lethal effects of predators but largely overlooked their non-lethal effects. We suggest that
conceptual advances coupled with an increased use of experiments have convincingly demonstrated that prey experience costs that transcend the obvious cost of death. Prey species use adaptive behaviours to avoid predators, and these behaviours are not cost-free. With predation risk, prey species greatly restrict their use of available habitats and consumption of available food resources. Effects of top predators consequently cascade down to the trophic levels below them. Top predators, the biggies, are thus both the targets of and the means for conservation at the landscape scale. |
Anonymous. (1999). Protection Funded for Himalayan Snow Leopards, Bears. |
Anonymous. (2000). A snow leopard conservation plan for Mongolia.
Abstract: The snow leopard faces multiple threats in the Himalayan region, from habitat degradation, loss of prey, the trade in pelts, parts and live animals, and conflict with humans, primarily pastoralists. Consequently, the populations are considered to be in decline and the species is listed as Endangered in the IUCN's Red List. As a 'flagship' and 'umbrella' species the snow leopard can be a unifying biological feature to raise awareness of its plight and the need for conservation, which will benefit other facets of Himalayan biodiversity as well. Some studies of snow leopards have been conducted in the Himalayan region. But, because of its elusive nature and preference for remote and inaccessible habitat, knowledge of the ecology and behaviour of this mystical montane predator is scant. The available information, however, suggests that snow leopards occur at low densities and large areas of habitat are required to conserve a viable population. Thus, many researchers and conservationists have advocated landscape-scale approaches to conservation within a regional context, rather than focusing on individual protected areas.This regional strategy for WWF's snow leopard conservation program is built on such an approach. The following were identified as important regional issues: 1) international trade in snow leopards and parts; 2) the human-snow leopard conflict; 3) the need for a landscape approach to conservation to provide large spatial areas that can support demographically and ecologically viable snow leopard metapopulations; 4) research on snow leopard ecology to develop long-term, science-based conservation management plans; and 5) regional coordination and dialog. While the issues are regional, the WWF's in the region have developed 5-year strategic actions and activities, using the regional strategies as a touchstone, which will be implemented at national levels. The WWF's will develop proposals based on these strategic actions, with estimated budgets, for use by the network for funding and fund-raising. WWF also recognizes the need to collaborate and coordinate within the network and with other organizations in the region to achieve conservation goals in an efficient manner, and will form a working group to coordinate activities and monitor progress.
|
Aryal, A. (2009). Final Report On Demography and Causes of Mortality of Blue Sheep (Pseudois nayaur) in Dhorpatan Hunting Reserve in Nepal.
Abstract: A total of 206 individual Blue sheep Pseudois nayaur were estimated in Barse and Phagune blocks of Dhorpatan Hunting Reserve (DHR) and population density was 1.8 Blue sheep/sq.km. There was not significant change in population density from last 4 decades. An average 7 animals/herd (SD-5.5) were classified from twenty nine herds, sheep per herds varying from 1 to 37. Blue sheep has classified into sex ratio on an average 75 male/100females was recorded in study area. The sex ratio was slightly lower but not significantly different from the previous study. Population of Blue sheep was seen stable or not decrease even there was high poaching pressure, the reason may be reducing the number of predators by poison and poaching which has
supported to increase blue sheep population. Because of reducing the predators Wolf Canis lupus, Wild boar population was increasing drastically in high rate and we can observed wild boar above the tree line of DHR. The frequency of occurrence of different prey species in scats of different predators shows that, excluding zero values, the frequencies of different prey species were no significantly different (ö2= 10.3, df = 49, p > 0.05). Most of the scats samples (74%) of Snow leopard, Wolf, Common Leopard, Red fox's cover one prey species while two and three species were present in 18% and 8%, respectively. Barking deer Muntiacus muntjak was the most frequent (18%) of total diet composition of common leopards. Pika Ochotona roylei was the most frequent (28%), and Blue sheep was in second position for diet of snow leopards which cover 21% of total diet composition. 13% of diet covered non-food item such as soil, stones, and vegetable. Pika was most frequent on Wolf and Red fox diet which covered 32% and 30% respectively. There was good positive relationship between the scat density and Blue sheep consumption rate, increasing the scat density, increasing the Blue sheep consumption rate. Blue sheep preference by different predators such as Snow leopard, Common leopard, Wolf and Red fox were 20%, 6%, 13% and 2% of total prey species respectively. Keywords: Report; mortality; blue; blue sheep; blue-sheep; sheep; Pseudois; pseudois nayaur; Pseudois-nayaur; nayaur; Dhorpatan; hunting; reserve; Nepal; biodiversity; research; training; snow; snow leopard; snow-leopard; leopard; conservation; program; population; Population-Density; density; densities; change; Sex; study; area; High; poaching; Pressure; reducing; number; predators; predator; poison; wolf; wolves; canis; Canis-lupus; lupus; wild; wild boar; prey; prey species; prey-species; species; scats; scat; value; fox; cover; deer; diet; leopards; pika; snow leopards; snow-leopards; soil; Relationship
|
Baral N., Stern, M., & Heinen, J. T. (2007). Integrated conservation and development project life cycles in the Annapurna Conservation Area, Nepal: Is development overpowering conservation? Biodiversity Conservation, 16(10), 2903–2917.
Abstract: The merits of integrated conservation and development projects (ICDPs), which aim to provide development incentives to citizens in return for conservation behaviors, have long been debated in the literature. Some of the most common critiques suggest that conservation activities tend to be strongly overpowered by development activities. We studied this assertion through participant observation and archival analysis of five Conservation Area Management Committees (CAMCs) in the Annapurna Conservation Area (ACA), Nepal. Committee activities were categorized as conservation activities (policy development and conservation implementation), development activities (infrastructure, health care, education, economic development, and sanitation), or activities related to institutional strengthening (administrative development and capacity building activities). Greater longevity of each ICDP was associated with greater conservation activity in relation to development activities. Project life cycles progressed from a focus on development activities in their early stages, through a transitional period of institutional strengthening, and toward a longer-term focus that roughly balanced conservation and development activities. Results suggest that the ICDP concept, as practiced in ACA, has been successful at building capacity for and interest in conservation amongst local communities. However, success has come over a period of nearly a decade, suggesting that prior conclusions about ICDP failures may have been based on unrealistic expectations of the time needed to influence behavioral changes in target populations.
|
Farrington, J. (2005). A Report on Protected Areas, Biodiversity, and Conservation in the Kyrgyzstan Tian Shan with Brief Notes on the Kyrgyzstan Pamir-Alai and the Tian Shan Mountains of Kazakhstan, Uzbekistan, and China. Ph.D. thesis, , Kyrgyzstan.
Abstract: Kyrgyzstan is a land of towering mountains, glaciers, rushing streams, wildflowercovered meadows, forests, snow leopards, soaring eagles, and yurt-dwelling nomads. The entire nation lies astride the Tian Shan1, Chinese for “Heavenly Mountains”, one of the world's highest mountain ranges, which is 7439 m (24,400 ft) in elevation at its highest point. The nation is the second smallest of the former Soviet Central Asian republics. In
spite of Kyrgyzstan's diverse wildlife and stunning natural beauty, the nation remains little known, and, as yet, still on the frontier of international conservation efforts. The following report is the product of 12 months of research into the state of conservation and land-use in Kyrgyzstan. This effort was funded by the Fulbright Commission of the U.S. State Department, and represents the most recent findings of the author's personal environmental journey through Inner Asia, which began in 1999. When I first started my preliminary research for this project, I was extremely surprised to learn that, even though the Tian Shan Range has tremendous ecological significance for conservation efforts in middle Asia, there wasn't a single major international conservation organization with an office in the former Soviet Central Asian republics. Even more surprising was how little awareness there is of conservation issues in the Tian Shan region amongst conservation workers in neighboring areas who are attempting to preserve similar species assemblages and ecosystems to those found in the Tian Shan. Given this lack of awareness, and the great potential for the international community to make a positive contribution towards improving the current state of biodiversity conservation in Kyrgyzstan and Central Asia, I have summarized my findings on protected areas and conservation in Kyrgyzstan and the Tian Shan of Kazakhstan, Uzbekistan, and Xinjiang in the chapters below. The report begins with some brief background information on geography and society in the Kyrgyz Republic, followed by an overview of biodiversity and the state of conservation in the nation, which at the present time closely parallels the state of conservation in the other former Soviet Central Asian republics. Part IV of the report provides a catalog of all major protected areas in Kyrgyzstan and the other Tian Shan nations, followed by a list of sites in Kyrgyzstan that are as yet unprotected but merit protection. In the appendices the reader will find fairly comprehensive species lists of flora and fauna found in the Kyrgyz Republic, including lists of mammals, birds, fish, reptiles, amphibians, trees and shrubs, wildflowers, and endemic plants. In addition, a draft paper on the history and current practice of pastoral nomadism in Kyrgyzstan has been included in Appendix A. While the research emphasis for this study was on eastern Kyrgyzstan, over the course of the study the author did have the opportunity to make brief journeys to southern Kyrgyzstan, Uzbekistan, Kazakhstan, and Xinjiang. While falling short of being a definitive survey of protected areas of the Tian Shan, the informational review which follows is the first attempt at bringing the details of conservation efforts throughout the entire Tian Shan Range together in one place. It is hoped that this summary of biodiversity and conservation in the Tian Shan will generate interest in the region amongst conservationists, and help increase efforts to protect this surprisingly unknown range that forms an island of meadows, rivers, lakes, and forests in the arid heart of Asia. Keywords: Report; protected; protected areas; protected area; protected-areas; protected-area; areas; area; biodiversity; conservation; Kyrgyzstan; Tian; Tian-Shan; shan; Pamir-Alai; mountains; mountain; Kazakhstan; Uzbekistan; China; environmental; study; former; soviet; central; Central Asia; asia; land; Forest; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; Chinese; range; republic; wildlife; International; research; land-use; land use; recent; inner; project; ecological; Middle; Middle Asia; Organization; awareness; region; preserve; species; ecosystems; ecosystem; potential; community; Biodiversity conservation; Xinjiang; information; Kyrgyz; Kyrgyz-Republic; protection; flora; fauna; mammals; birds; reptiles; amphibians; endemic; plants; plant; history; Southern; survey; protect; river; heart
|
Ferguson, D. A. (1997). International Cooperation for Snow Leopard and Biodiversity Conservation: The Government Perspective. In R.Jackson, & A.Ahmad (Eds.), (pp. 178–193). Lahore, Pakistan: Islt.
Keywords: snow leopard; biodiversity; management; development; India; Pakistan; conservation; hunting; poaching; hunter; pelt; skin; fur; coat; livestock; habitat; herder; herders; Ussr; park; parks; reserves; reserve; refuge; Slims; field study; survey; surveys; transects; transect; Khunjerab; protected area; browse; U.S.S.R.; 2990
|
Freeman, H., Jackson, R., Hillard, R., & Hunter, D. O. (1994). Project Snow Leopard: a multinational program spearheaded by the International Snow Leopard Trust. In J.L.Fox, & D. Jizeng (Eds.), (pp. 241–245). Usa: Islt.
Keywords: Project-snow-leopard; biodiversity; conservation; protected-areas; parks; park; refuge; reserve; habitat; status; predator; prey; livestock; herders; poaching; hunting; skins; pelts; coats; fur; bones; medicine; management; livestock-depredation; trade; corridors; trans-boundry; project; protected-area; protected; area; areas; livestock depredation; depredation; browse; 2780
|
Gvozdev E.V. (1989). Dzhungarsky nature reserve.
Abstract: Fauna of the mammals in Dzungarian Ala Tau included 54 species, from them in IUCN Red book, the Red Data book of USSR and Kazakh Red Data Book listed snow leopard, dhole, brown bear, Central Asian otter, Turkestan lynx, manul, argali, marbled polecat and stone marten. Institute of geography of Kazakhstan offers the project on creation of protected territory on Dzungarian Ala Tau for biodiversity conservation and increase in number of rare and disappearing species.
Keywords: Kazakhstan; Dzungarian Ala Tau; biodiversity; mammals; snow leopard; protected area creation.; 6850; Russian
|
Jackson, P. (1997). The Snow Leopard: A Flagship for Biodiversity in the Mountains of Central Asia. In R.Jackson (Ed.), (pp. 3–7). Lahore, Pakistan: Allied Press.
Keywords: Afghanistan; Bhutan; China; India; kazakstan; Kyrgyzstan; Mongolia; Nepal; Pakistan; Russia; Tajikistan; Uzbekistan; ecology; distribution; parks; park; reserve; status; refuge; habitat; herders; biodiversity; herder; livestock; prey; protected-area; Kazakhstan; protected; area; browse; 2030
|
Jackson, R. (1998). People-Wildlife Conflict Management in the Qomolangma Nature Preserve, Tibet. In W. Ning, D. Miller, L. Zhu, & J. Springer (Eds.), (pp. 40–46). Tibet's Biodiversity: Conservation and Management.. China: Tibet Forestry Department and World Wide Fund for Nature. China Forestry Publishing House.
Abstract: The primary objective of this paper is to report on people-wildlife conflicts arising from crop damage and livestock depredation in the Qomolangma Reserve, with special reference to the management of protected and endangered mammals.
|
Jackson, R. (2000). Community Participation: Tools and Examples. (pp. 1–9). Management Planning Workshop for the Trans-Himalayan Protected Areas, 25-29 August, 2000, Leh, Ladak.
Abstract: In response to dwindling wildlife populations and habitat, governments established national parks and protected areas, often with little input from people living in the immediate area. In some cases communities were relocated, but in most they are left to pursue traditional agricultural and pastoral livelihoods under a new set of rules. Important questions of land tenure remained unresolved, with a “fences and fines” approach to protected area management (Stolton and Dudley 1999).
Keywords: community; workshop; wildlife; India; us; Himalayan; biodiversity; project; snow; snow leopard; snow-leopard; leopard; trust; management; planning; trans-himalayan; transhimalayan; protected; protected areas; protected area; protected-areas; protected-area; areas; area; 2000; leh; Ladakh
|
Jackson, R., Hunter, D., & Emmerich, C. (1997). SLIMS: An Information Management System for Promoting the Conservation of Snow Leopards and Biodiversity in the Mountains of Central Asia. In R.Jackson, & A.Ahmad (Eds.), (pp. 75–91). Lahore, Pakistan: Islt.
Keywords: Slims; conservation; biodiversity; asia; livestock; parks; park; protected-area; reserve; reserves; refuge; prey; habitat; distribution; status; Pakistan; Mongolia; India; China; Project-snow-leopard; survey; surveys; field; snow-line; Padu; Wwf; Macne; Merc; Gis; field-surveys; transects; protected area; protected areas; protected; area; areas; project snow leopard; project; snow leopard; snow; leopard; snow line; world wildlife fund; field surveys; browse; 2770
|
Kanderian, N., Lawson, D., Zahler, P. (2011). Current status of wildlife and conservation in Afghanistan. International Journal of Environmental Studies, 68(3), 281–298.
Abstract: Afghanistan’s position in latitude, geography and at the intersection of three biogeographic realms has resulted in a surprising biodiversity. Its wildlife includes species such as the snow leopard, Asiatic black bear, Marco Polo sheep, markhor and greater flamingo. Principal threats include high levels of deforestation, land encroachment and hunting for food and trade. Continuing security issues have also made it difficult to monitor species abundance and population trends. Over the last decade, however, survey efforts have provided the first collection of species and habitat data since the late 1970s. Initial findings are enabling the Government and rural communities to begin implementing important conservation measures. This process has included policy development and protected area planning, promoting alternative livelihoods and responsible community management, and continuing research into the status of biodiversity in the field.
Keywords: Afghanistan; Biodiversity; Deforestation; Hunting; Illegal trade; Agriculture; Livelihood; Governance; Survey; Training
|
Koshkarev E. (1998). Critical Ranges as Centres of Biodiversity (Vol. N 14).
Abstract: A high percentage of rare species in Central Asia experience limited conditions for distribution. Geographic centers with higher species diversity are generally constrained in terms of territory: they are formed when ranges overlap. But in Central Asia and along its borders with Russia, centers of biodiversity overlap at the very marginal edges of ranges. Central Asian species cross into Russian territory, where desert and steppe are replaced by thick forest. Here the northern borders of their ranges are sharply fragmented and isolated. Typical examples for Central Asia are the ranges of the cheetah (Acinonyx jubatus), Asian leopard (Panthera pardus caucasica), striped hyena (Hyaena hyaena), Bukhara deer (Census elaphus bactrianus), markhor (Capra falconeri), blue sheep (Pseudois nayauf) and argali (Ovis ammon). In Russia are the Altai subspecies of argali, the Siberian argali (O.a.ammon), the mountain goat (Capra sibirica), Mongolian gazelle (Procapra gutturosa), snow leopard (Uncia uncia), Pallas' cat (Felis manul), dhole (Cuon alpinus), grey marmot (Marmota baibacina), Mongolian marmot (M. sibirica) and tolai hare (Lepus tolai). Where the numbers o f individuals has fallen to extreme lows, the most effective mechanism for species survival may be supporting the integrity of ranges, in order to preserve population exchanges between neighboring groups. The geographic location of reserves and other protected territories is vitally important for the survival of Central Asian species, given the acute fragmentation of their ranges. These reserves should include significant, viable centers of population the key places. Wherever the creation of permanent protected territories is impossible, a new tactic must be found, such as introducing temporary limitations on the use of land for agriculture and hunting. But all protected territories, whether temporary or permanent, should be connected, forming a core and periphery. The marginal range areas must not be forgotten, if total protection of endangered populations is to be accomplished.
Keywords: Central Asia; biodiversity; rare species; species survival; snow leopard.; 7270; Russian
|
Kuznetsov B.A. (1950). The mountainous province in Central Asia (Vol. Edition 20th. (XXXV). New series. Zoological secti).
Abstract: The landscape and biologic diversity of Central Asia's mountains are described. Different types of fauna complexes are segregated. Snow leopard, dhole, and ibex are referred to Central Asia's highland species.
Keywords: Central Asia; landscapes; biodiversity; mountain zone; fauna; snow leopard.; 7510; Russian
|
Kyes, R., & Chalise, M. K. (2005). Assessing the Status of the Snow Leopard Population in Langtang National Park, Nepal.
Abstract: This project is part of an ongoing snow leopard study established in 2003 with support from the ISLT. The study involves a multifaceted approach designed to provide important baseline data on the status of the snow leopard population in Langtang National Park (LNP), Nepal and to generate long-term support and commitment to the conservation of snow leopards in the park. The specific aims include: 1) conducting a population survey of the snow leopards in LNP, focusing on distribution and abundance; 2) assessing the status of prey species populations in the park; and 3) providing educational outreach programs on snow leopard conservation for local school children (K-8) living in the park. During the 2004 study period, snow leopard signs were observed (including pugmarks and scats) although somewhat fewer than in 2003. Similarly, the average herd size of the snow leopards' primary prey species in LNP (the Himalayan thar) was a bit lower than in 2003. There is speculation that the thar populations and the snow leopards may be moving to more remotes areas of the park perhaps in response to increasing pressure from domestic livestock grazing. This possibility is being addressed during the 2005 study period.
Keywords: status; snow; snow leopard; snow-leopard; leopard; population; Langtang; national; national park; National-park; park; Nepal; project; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; biodiversity; research; study; Support; Islt; approach; Data; conservation; snow leopards; snow-leopards; leopards; survey; distribution; abundance; prey; prey species; prey-species; species; populations; programs; local; sign; pugmarks; scats; scat; primary; Himalayan; areas; area; Response; Pressure; domestic; domestic livestock; livestock; grazing
|
Mishra, C., & Rawat, G. S. (1998). Livestock grazing and Biodiversity Conservation: Comments on Saberwal. Conservation Biology, 12, 25–32. |
Mishra, C., Madhusudan, M. D., & Datta, A. (2006). Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs (Vol. 40).
Abstract: The high altitudes of Arunachal Pradesh,India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12 carnivores, 10 ungulates and 5 primates) were recorded, of which 13 are categorized as Endangered or Vulnerable on the IUCN Red List. One species of primate, the Arunachal macaque Macaca munzala, is new to science and the Chinese goral Nemorhaedus caudatus is a new addition to the ungulate fauna of the Indian subcontinent. We documented peoples' dependence on natural resources for grazing and extraction of timber and medicinal plants. The region's mammals are threatened by widespread hunting. The snow leopard Uncia uncia and dhole Cuon alpinus are also persecuted in retaliation for livestock depredation. The tiger Panthera tigris, earlier reported from the lower valleys, is now apparently extinct there, and range reductions over the last two decades are reported for bharal Pseudois nayaur and musk deer Moschus sp.. Based on mammal species richness, extent of high altitude habitat, and levels of anthropogenic disturbance, we identified a potential site for the creation of Arunachal's first high altitude wildlife reserve (815 km2). Community-based efforts that provide incentives for conservation-friendly practices could work in this area, and conservation awareness programmes are required, not just amongst the local communities and schools but for politicians, bureaucrats and the army.
Keywords: anthropogenic; area; Arunachal; assessment; awareness; bharal; biodiversity; carnivore; carnivores; community; community-based; conservation; deer; depredation; dhole; endangered; extinct; fauna; goral; grazing; habitat; habitats; High; Himalaya; hunting; incentives; India; indian; Iucn; leopard; livestock; livestock-depredation; livestock depredation; local; mammals; musk; musk-deer; nayaur; panthera; people; peoples; plant; plants; potential; Pseudois; Pseudois-nayaur; pseudois nayaur; range; recent; region; Report; reserve; resource; schools; snow; snow-leopard; snow leopard; species; survey; surveys; threat; threatened; threats; tiger; uncia; Uncia-uncia; Uncia uncia; ungulate; ungulates; valley; wildlife; work; Panthera-tigris; tigris
|
Saberwal, V. K. (1996). Pastoral Politics:gaddi grazing, degradation and biodiversity conservation in Himachal Pradesh, India. Conservation Biology, 10, 741–749. |
Smith, A. T., & Foggin, M. J. (1998). The Plateau Pika (Ochotona curzoniae) is a Keystone Species for Biodiversity on the Tibetan Plateau. Animal Conservation, 2, 235–240.
Abstract: It is necessary to look at the big picture when managing biological resources on the QinghaiXizang (Tibetan) plateau. Plateau pikas (Ochotona curzoniae) are poisoned widely across the plateau. Putative reasons for these control measures are that pika populations may reach high densities and correspondingly reduce forage for domestic livestock (yak, sheep, horses), and because they may be responsible for habitat degradation. In contrast, we highlight the important role the plateau pika plays as a keystone species in the Tibetan plateau ecosystem. The plateau pika is a keystone species because it: (i) makes burrows that are the primary homes to a wide variety of small birds and lizards; (ii) creates microhabitat disturbance that results in an increase in plant species richness; (iii) serves as the principal prey for nearly all of the plateau's predator species; (iv) contributes positively to ecosystem-level dynamics. The plateau pika should be managed in concert with other uses of the land to ensure preservation of China's native biodiversity, as well as long-term sustainable use of the pastureland by domestic livestock.
Keywords: prey; species; pika; Tibet; tibetan plateau; domestic livestock; biodiversity; browse; 90
|
The Snow Leopard Conservancy. (2002). A Learning Tour of the CBN (Corbett, Nainital and Binsar) Eco-tourism Initiative Sites by Villagers from Hemis National Park and the Surrounding Area (18-28th November 2002) (R. Wangchuk, & J. Dadul, Eds.) (Vol. SLC Field Document Series No 5). Leh, Ladakh, India.
Abstract: Ladakh lies between the Great Himalayas and the formidable Karakoram mountains.
Its unique landscape and rich cultural heritage have been a great attraction to tourists all over the world. Apart from its uniqueness it has a rich Trans-Himalayan bio-diversity and is home to the rare and elusive snow leopard. It opened to tourism in 1974 with a handful of tourists and has gone up to the present number of about 18,000 visitors annually. Ecotourism started in Ladakh in mid 80s in the form of conservation of traditional architecture when local communities realized the importance of their rich culture and traditions being valued by the visiting tourists. However, while tourism became a major source of income to people in Leh, most of the benefits stayed with outside (Delhi) based travel agents thus leaving out the rural masses. During the last three years Snow Leopard Conservancy and The Mountain Institute have been initiating ecotourism activities with local communities in the Hemis National Park as an alternate livelihood and an indirect way to compensate losses of livestock from predatory animals. However, local people while venturing into such new initiatives have tended to be like blind men that are being led by NGO's so that they do not stumble along their paths. Keywords: Ladakh; Himalayas; Himalaya; Karakoram; mountains; mountain; landscape; tourists; trans-himalayan; transhimalayan; biodiversity; home; snow; snow leopard; snow-leopard; leopard; tourism; number; ecotourism; 80; conservation; traditional; local; community; Culture; income; people; leh; travel; rural; Snow Leopard Conservancy; ecotourism activities; ecotourism-activities; activities; activity; Hemis; national; national park; National-park; park; livelihood; loss; livestock; Animals; Animal; local people; NGO's; eco-tourism; villagers; area
|