Home | << 1 2 3 >> |
Ale, S. Conservation of the snow leopard in Nepal.
Keywords: Nepal; radio-collars; tracking; Annapurna-Conservation-Area; protected-areas; parks; reserves; refuge; conservation; livestock; religion; folklore; blue-sheep; blue; sheep; browse; radio collars; radio; collar; collars; annapurna conservation area; annapurna; area; protected; areas; 4080
|
Ale, S., Shrestha, B., and Jackson, R. (2014). On the status of Snow Leopard Panthera Uncia (Schreber 1775) in Annapurna, Nepal. Journal of Threatened Taxa, (6(3)), 5534–5543. |
Ale, S. B. (1994). Snow Leopard in Remote Districts of Nepal (Vol. xii). Seattle: Islt. |
Ale, S. B. (1997). The Annapurna Conservation Area Project: A Case Study of an Integrated Conservation and Development Project in Nepal. In R. Jackson, & A. Ahmad (Eds.), (pp. 155–169). Lahore, Pakistan: Islt.
Keywords: conservation; annapurna; park; parks; reserve; reserves; refuge; management; habitat; livestock; herders; herder; Acap; education; community-development; tourism; women; protected-area; browse; community; development; protected; area; 2960
|
Baral N., Stern, M., & Heinen, J. T. (2007). Integrated conservation and development project life cycles in the Annapurna Conservation Area, Nepal: Is development overpowering conservation? Biodiversity Conservation, 16(10), 2903–2917.
Abstract: The merits of integrated conservation and development projects (ICDPs), which aim to provide development incentives to citizens in return for conservation behaviors, have long been debated in the literature. Some of the most common critiques suggest that conservation activities tend to be strongly overpowered by development activities. We studied this assertion through participant observation and archival analysis of five Conservation Area Management Committees (CAMCs) in the Annapurna Conservation Area (ACA), Nepal. Committee activities were categorized as conservation activities (policy development and conservation implementation), development activities (infrastructure, health care, education, economic development, and sanitation), or activities related to institutional strengthening (administrative development and capacity building activities). Greater longevity of each ICDP was associated with greater conservation activity in relation to development activities. Project life cycles progressed from a focus on development activities in their early stages, through a transitional period of institutional strengthening, and toward a longer-term focus that roughly balanced conservation and development activities. Results suggest that the ICDP concept, as practiced in ACA, has been successful at building capacity for and interest in conservation amongst local communities. However, success has come over a period of nearly a decade, suggesting that prior conclusions about ICDP failures may have been based on unrealistic expectations of the time needed to influence behavioral changes in target populations.
|
Chetri, M., Odden, M., Sharma, K., Flagstad, O., Wegge, P. (2019). Estimating snow leopard density using fecal DNA in a large landscape in north-central Nepal. Global Ecology and Conservation, (17), 1–8.
Abstract: Although abundance estimates have a strong bearing on the conservation status of a
species, less than 2% of the global snow leopard distribution range has been sampled systematically, mostly in small survey areas. In order to estimate snow leopard density across a large landscape, we collected 347 putative snow leopard scats from 246 transects (490 km) in twenty-six 5 5km sized sampling grid cells within 4393 km2 in Annapurna- Manaslu, Nepal. From 182 confirmed snow leopard scats, 81 were identified as belonging to 34 individuals; the remaining were discarded for their low (<0.625) quality index. Using maximum likelihood based spatial capture recapture analysis, we developed candidate model sets to test effects of various covariates on density and detection of scats on transects. The best models described the variation in density as a quadratic function of elevation and detection as a linear function of topography. The average density estimate of snow leopards for the area of interest within Nepal was 0.95 (SE 0.19) animals per 100 km2 (0.66e1.41 95% CL) with predicted densities varying between 0.1 and 1.9 in different parts, thus highlighting the heterogeneity in densities as a function of habitat types. Our density estimate was low compared to previous estimates from smaller study areas. Probably, estimates from some of these areas were inflated due to locally high abundances in overlap zones (hotspots) of neighboring individuals, whose territories probably range far beyond study area borders. Our results highlight the need for a large-scale approach in snow leopard monitoring, and we recommend that methodological problems related to spatial scale are taken into account in future snow leopard research. |
Filla, M., Lama, R. P., Filla, T., Heurich, M., Balkenhol, N., Waltert, M., Khorozyan, I. (2022). Patterns of livestock depredation by snow leopards and effects of intervention strategies: lessons from the Nepalese Himalaya. Wildlife Research, .
Abstract: Context: Large carnivores are increasingly threatened by anthropogenic activities, and their protection is among the main goals of biodiversity conservation. The snow leopard (Panthera uncia) inhabits high-mountain landscapes where livestock depredation drives it into conflicts with local people and poses an obstacle for its conservation.
Aims: The aim of this study was to identify the livestock groups most vulnerable to depredation, target them in implementation of practical interventions, and assess the effectiveness of intervention strategies for conflict mitigation. We present a novel attempt to evaluate intervention strategies for particularly vulnerable species, age groups, time, and seasons. Methods: In 2020, we conducted questionnaire surveys in two regions of the Annapurna Conservation Area, Nepal (Manang, n = 146 respondents and Upper Mustang, n = 183). We applied sample comparison testing, Jacobs’ selectivity index, and generalised linear models (GLMs) to assess rates and spatio-temporal heterogeneity of depredation, reveal vulnerable livestock groups, analyse potential effects of applied intervention strategies, and identify husbandry factors relevant to depredation. Key results: Snow leopard predation was a major cause of livestock mortality in both regions (25.4–39.8%), resulting in an estimated annual loss of 3.2–3.6% of all livestock. The main intervention strategies (e.g. corrals during night-time and herding during daytime) were applied inconsistently and not associated with decreases in reported livestock losses. In contrast, we found some evidence that dogs, deterrents (light, music playing, flapping tape, and dung burning), and the use of multiple interventions were associated with a reduction in reported night-time depredation of yaks. Conclusions and implications: We suggest conducting controlled randomised experiments for quantitative assessment of the effectiveness of dogs, deterrents, and the use of multiple interventions, and widely applying the most effective ones in local communities. This would benefit the long-term co-existence of snow leopards and humans in the Annapurna region and beyond. |
Filla, M., Lama, R. P., Ghale, T. R., Signer, J., Filla, T., Aryal, R. R., Heurich, M., Waltert, M., Balkenhol, N., Khorozyan, I. (2020). In the shadows of snow leopards and the Himalayas: density and habitat selection of blue sheep in Manang, Nepal. Ecology and Evolution, 2021(11), 108–122.
Abstract: There is a growing agreement that conservation needs to be proactive and pay increased attention to common species and to the threats they face. The blue sheep (Pseudois nayaur) plays a key ecological role in sensitive high-altitude ecosystems of Central Asia and is among the main prey species for the globally vulnerable snow leopard (Panthera uncia). As the blue sheep has been increasingly exposed to human pressures, it is vital to estimate its population dynamics, protect the key populations, identify important habitats, and secure a balance between conservation and local livelihoods. We conducted a study in Manang, Annapurna Conservation Area (Nepal), to survey blue sheep on 60 transects in spring (127.9 km) and 61 transects in autumn (134.7 km) of 2019, estimate their minimum densities from total counts, compare these densities with previous estimates, and assess blue sheep habitat selection by the application of generalized additive models (GAMs). Total counts yielded minimum density estimates of 6.0–7.7 and 6.9–7.8 individuals/km2 in spring and autumn, respectively, which are relatively high compared to other areas. Elevation and, to a lesser extent, land cover indicated by the normalized difference vegetation index (NDVI) strongly affected habitat selection by blue sheep, whereas the effects of anthropogenic variables were insignificant. Animals were found mainly in habitats associated with grasslands and shrublands at elevations between 4,200 and 4,700 m. We show that the blue sheep population size in Manang has been largely maintained over the past three decades, indicating the success of the integrated conservation and development efforts in this area. Considering a strong dependence of snow leopards on blue sheep, these findings give hope for the long-term conservation of this big cat in Manang. We suggest that long-term population monitoring and a better understanding of blue sheep–livestock interactions are crucial to maintain healthy populations of blue sheep and, as a consequence, of snow leopards.
|
Gurung, G. T. K. (2004). Snow Leopard (Uncia uncia) and Human Interaction in Phoo Village in the Annapurna Conservation Area, Nepal.
Abstract: Phoo village in the Annapurna Conservation Area (ACA) in Nepal is located at 4,052 m als physically
in the central north of the country. Livestock keeping is the main activity of the people for making a living amidst a conflict with snow leopard (Uncia uncia). Each year snow leopard kills a number of livestock resulting significant economic losses for the poor people living in this remote area. Unless the people – snow leopard conflict is well understood and appropriate conflict management activities are implemented, the long run co-existence between people and snow leopard – especially the existence of snow leopard in this part of the world -will be in question. This has now become an utmost important as the aspiration of the people for economic development has risen significantly and the area has been opened to tourism since spring 2002. In addition to this, the globalisation process has directly and indirectly affected the traditional resource management practices and co-existence strategies of many traditional societies including Phoo. The livestock depredation for 3 years (2001 – 2004) by snow leopard was studied by interviewing the herders to understand the responsible and specific bio-physical and socio-economic factors. The study revealed that goats are most depredated species followed by sheep. Winter months (January – April) and winter pastures are most vulnerable to snow leopard predation. Presence of bushes, forest and boulders make good hides for snow leopard resulting into high depredation. The study also showed that a lax animal guarding system was significantly responsible for high livestock depredation by snow leopard. The study showed that improvement in livestock guarding system should be adopted as the most important activity. However despite the importance of livestock in the economy of Phoo it is still not well understood why the herders neglect for proper livestock guarding. This requires further study. Proper guarding system is required especially in winter season in winter pastures. It is also suggested that there should be changes in the composition of livestock species by promoting more yaks and discouraging or minimising goats. Yaks and large animals are less depredated and small animals like goats and sheep are highly depredated by snow leopard. A trend was also observed in Phoo village where there is an increase in the number of yaks and a decrease in the number of goats over last few years. This could be a management response of the herders to livestock depredation. Other protective measures of the livestock at the corrals have also been recommended including promotion of guard dogs and other measures. Since the area is opened for tourism, it is suggested that the tourism opportunity for the economic development of the area should be grasped so that the heavy dependence on livestock raising would be minimised. This will help minimise the number of human – snow leopard conflicts. Keywords: phoo; annapurna conservation area; Nepal; livestock; human interaction; conflict management; yaks; goats; sheep; horse; corral; 5280
|
Hanson, J. H. Household Conflicts with Snow Leopard Conservation and Impacts from Snow Leopards in the Everest and Annapurna Regions of Nepal. Environmental Management, , 1 of 12.
Abstract: Impacts on households from large carnivores are frequently reported in the conservation literature, but conflicts between households and large carnivore conservation are not. Employing a human-wildlife coexistence framework that distinguishes between human-wildlife impacts on one hand, and human-conservation conflicts on the other, this paper presents data from Annapurna Conservation Area and Sagarmatha (Everest) National Park, Nepal, each with different models of conservation governance. Using systematic sampling, quantitative information from 705 households was collected via questionnaires, while 70 semi-structured interviews were conducted with key informants for cross-methods triangulation. 7.7% of households reported conflicts with snow leopard conservation in the previous 12 months, primarily due to damage to livelihoods; these were significantly higher in the Annapurna region. 373 livestock were reported lost by households to snow leopards in the previous 12 months, representing 3.4% of total livestock owned and US$ 132,450 in financial value. Livestock losses were significantly lower in the Everest area. In linear regression models, total household livestock losses to all sources best explained conflicts with snow leopard conservation and household livestock losses to snow leopards but the models for the former dependent variable had very low explanatory power. Conservation in general, and large carnivore conservation in particular, should distinguish carefully between impacts caused by coexistence with these species and conflicts with conservation actors and over the methods and interventions used to conserve carnivores, especially where these negatively impact local livelihoods. In addition, livestock husbandry standards are highlighted again as an important factor in the success of carnivore conservation programmes.
|