Home | << 1 >> |
Ale S. (2005). Have snow leopards made a comeback to the Everest region of Nepal?.
Abstract: In the 1960s, the endangered snow leopard was locally extirpated from the Sagarmatha (Mt. Everest) region of Nepal. In this Sherpa-inhabited high Himalaya, the flourishing tourism since the ascent of Mt Everest in 1953, has caused both prosperity and adverse impacts, the concern that catalyzed the establishment of Mt. Everest National Park in the region in 1976. In the late 1980s, there were reports that some transient snow leopards may have visited the area from adjoining Tibet, but no biological surveys exist to confirm the status of the cats and their prey. Have snow leopards finally returned to the top of the world? Exploring this question was the main purpose of this research project. We systematically walked altogether 24 sign transects covering over 13 km in length in three valleys, i.e. Namche, Phortse and Gokyo, of the park, and counted several snow leopard signs. The results indicated that snow leopards have made a comeback in the park in response to decades of protective measures, the virtual cessation of hunting and the recovery of the Himalayan tahr which is snow leopard's prey. The average sign density (4.2 signs/km and 2.5 sign sites/km) was comparable to that reported from other parts of the cats' range in the Himalaya. On this basis, we estimated the cat density in the Everest region between 1 to 3 cats per 100 sq km, a figure that was supported by different sets of pugmarks and actual sightings of snow leopards in the 60 km2 sample survey area. In the study area, tahr population had a low reproductive rate (e.g. kids-to-females ratio, 0.1, in Namche). Since predators can influence the size and the structure of prey species populations through mortality and through non-lethal effects or predation risk, snow leopards could have been the cause of the population dynamics of tahr in Sagarmtha, but this study could not confirm this speculation for which further probing may be required.
Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; region; Nepal; Report; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; 1960; endangered; Sagarmatha; High; Himalaya; tourism; impact; establishment; national; national park; National-park; park; 1980; area; Tibet; surveys; survey; status; Cats; cat; prey; research; project; sign; transects; transect; length; valley; Response; hunting; recovery; Himalayan; tahr; density; densities; range; pugmarks; sighting; 60; study; population; predators; predator; structure; prey species; prey-species; species; populations; mortality; effects; predation; population dynamics
|
Ale, S. B., Yonzon, P., & Thapa, K. (2007). Recovery of snow leopard Uncia uncia in Sagarmatha (Mount Everest) National Park, Nepal (Vol. 41).
Abstract: From September to November 2004 we conducted surveys of snow leopard Uncia uncia signs in three major valleys in Sagarmatha (Mount Everest) National Park in Nepal using the Snow Leopard Information Management System, a standardized survey technique for snow leopard research. We walked 24 transects covering c. 14 km and located 33 sites with 56 snow leopard signs, and 17 signs incidentally in other areas. Snow leopards appear to have re-inhabited the Park, following their disappearance c. 40 years ago, apparently following the recovery of Himalayan tahr Hemitragus jemlahicus and musk deer Moschus chrysogaster populations. Taken together the locations of all 73 recent snow leopard signs indicate that the species is using predominantly grazing land and shrubland/ open forest at elevations of 3,000-5,000 m, habitat types that are also used by domestic and wild ungulates. Sagarmatha is the homeland of c. 3,500 Buddhist Sherpas with .3,000 livestock. Along with tourism and associated developments in Sagarmatha, traditional land use practices could be used to ensure coexistence of livestock and wildlife, including the recovering snow leopards, and ensure the wellbeing of the Sherpas.
Keywords: Nepal; recovery; Sagarmatha Mount Everest National Park; snow leopard; Uncia uncia; surveys; survey; snow; snow-leopard; leopard; uncia; Uncia-uncia; valley; Sagarmatha; national; national park; National-park; park; using; information; management; system; research; transects; transect; sign; areas; area; snow leopards; snow-leopards; leopards; 40; Himalayan; tahr; musk; musk-deer; deer; location; recent; species; grazing; land; Forest; habitat; domestic; wild; ungulates; ungulate; livestock; tourism; development; traditional; land use; land-use; use; wildlife
|
Gajurel, D. (2006). Snow Leopards Found in Nepal's Langtang National Park (Editor-in-Chief Sunny Lewis and Managing Editor Jim Crabtree, Ed.). Environment News Service. |
Jack, R. (2008). DNA Testing and GPS positioning of snow leopard (Panthera uncia) genetic material in the Khunjerab National Park Northern Areas, Pakistan.
Abstract: The protection of Snow Leopards in the remote and economically disadvantaged Northern Areas of Pakistan needs local people equipped with the skills to gather and present information on the number and range of individual animals in their area. It is important for the success of a conservation campaign that the people living in the area are engaged in the conservation process. Snow Leopards are elusive and range through inhospitable terrain so direct study is difficult. Consequently the major goals for this project were twofold, to gather information on snow leopard distribution in this area and to train local university students and conservation management professionals in the techniques used for locating snow leopards without the need to capture or even see the animals. This project pioneered the use of DNA testing of field samples collected in Pakistan to determine the distribution of snow leopards and to attempt to identify individuals. These were collected in and around that country's most northerly national park, the Kunjurab National Park, which sits on the Pakistan China border. Though the Northern Areas is not a well developed part of Pakistan, it does possess a number of institutions that can work together to strengthen snow leopard conservation. The first of these is a newly established University with students ready to be trained in the skills needed. Secondly WWF-Pakistan has an office in the main town and a state of the art GIS laboratory in Lahore and already works closely with the Forest Department who manage the national park. All three institutions worked together in this project with WWF providing GIS expertise, the FD rangers, and the university students carrying out the laboratory work. In addition in the course of the project the University of the Punjab in Lahore also joined the effort, providing laboratory facilities for the students. As a result of this project maps have been produced showing the location of snow leopards in
two areas. Preliminary DNA evidence indicates that there is more than one animal in this relatively small area, but the greatest achievement of this project is the training and experience gained by the local students. For one student this has been life changing. Due to the opportunities provided by this study the student, Nelofar gained significant scientific training and as a consequence she is now working as a lecturer and research officer for the Center for Integrated Mountain Research, New Campus University of the Punjab, Lahore Pakistan Keywords: project; snow; snow leopard; snow-leopard; leopard; network; conservation; program; Dna; Gps; panthera; panthera uncia; Panthera-uncia; uncia; Khunjerab; Khunjerab-National-Park; national; national park; National-park; park; areas; area; Pakistan; protection; snow leopards; snow-leopards; leopards; local; local people; people; information; number; range; Animals; Animal; study; distribution; management; professional; techniques; capture; use; field; country; China; border; work; art; Gis; Forest; manage; Wwf; maps; map; location; training; research; mountain
|
Jackson, R. (1999). Snow Leopards, Local People and Livestock Losses: Finding solutions using Appreciative Participatory Planning and Action (APPA) in the Markha Valley of Hemis National Park, Ladakh, October 6-26, 1999. Cat News, 31(Autumn), 22–23.
Abstract: Livestock depredation is emerging as a significant issue across the Himalaya, including the Hemis National Park (HNP) in Ladakh. Some consider that this protected area harbors the best snow leopard population in India, but local herders perceive the endangered snow leopard as a serious threat to their livelihood.
Keywords: snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; local; local people; people; livestock; loss; using; participatory; planning; action; valley; Hemis; national; national park; National-park; park; Ladakh
|
Jackson, R., & Wangchuk, R. (2004). A Community-Based Approach to Mitigating Livestock Depredation by Snow Leopards (Vol. 9).
Abstract: Livestock depredation by the endangered snow leopard (Panthera uncia) _is an increasingly contentious issue in Himalayan villages, especially in or near protected areas. Mass attacks in which as many as 100 sheep and goats are killed in a single incident inevitably result in retaliation by local villagers. This article describes a community-based conservation initiative to address this problem in Hemis National Park, India. Human-wildlife conflict is alleviated by predator-proofing villagers' nighttime livestock pens and by enhancing household incomes in environmentally sensitive and culturally compatible ways. The authors have found that the highly participatory strategy described here (Appreciative Participatory Planning and Action-APPA) leads to a sense of project ownership by local stakeholders, communal empowerment, self-reliance, and willingness to co-exist with
snow leopards. The most significant conservation outcome of this process is the protection from retaliatory poaching of up to five snow leopards for every village's livestock pens that are made predator-proof._ Keywords: snow leopard,depredation,human-wildlife conflict,participatory planning,India; livestock; livestock depredation; livestock-depredation; depredation; endangered; snow; snow leopard; snow-leopard; leopard; panthera; panthera uncia; Panthera-uncia; uncia; Himalayan; protected; protected areas; protected area; protected-areas; protected-area; areas; area; attack; sheep; goats; goat; local; villagers; community-based; conservation; Hemis; national; national park; National-park; park; India; conflict; pens; income; participatory; strategy; planning; sense; project; snow leopards; snow-leopards; leopards; protection; retaliatory; poaching
|
Jackson, R., Roe, J., Wangchuk, R., & Hunter, D. (2005). Camera-Trapping of Snow Leopards. Cat News, 42(Spring), 19–21.
Abstract: Solitary felids like tigers and snow leopards are notoriously difficult to enumerate, and indirect techniques like pugmark surveys often produce ambiguous information that is difficult to interpret because many factors influence marking behavior and frequency (Ahlborn & Jackson 1988). Considering the snow leopard's rugged habitat, it is not surprising then that information on its current status and occupied range is very limited. We adapted the camera-trapping techniques pioneered by Ullas Karanth and his associates for counting Bengal tigers to the census taking of snow leopards in the Rumbak watershed of the India's Hemis High Altitude National Park (HNP), located in Ladakh near Leh (76ø 50' to 77ø 45' East; 33ø 15' to 34ø 20'North).
Keywords: camera trapping; snow; snow leopards; snow leopard; snow-leopards; snow-leopard; leopards; leopard; felids; tigers; tiger; techniques; surveys; survey; information; factor; marking; behavior; Ahlborn; Jackson; habitat; status; range; census; India; Hemis; High; national; national park; National-park; park; Ladakh; leh
|
Kyes, R., & Chalise, M. K. (2003). Snow Leopard Study Summary 2003, Langtang National Park, Nepal. |
Kyes, R., & Chalise, M. K. (2005). Assessing the Status of the Snow Leopard Population in Langtang National Park, Nepal.
Abstract: This project is part of an ongoing snow leopard study established in 2003 with support from the ISLT. The study involves a multifaceted approach designed to provide important baseline data on the status of the snow leopard population in Langtang National Park (LNP), Nepal and to generate long-term support and commitment to the conservation of snow leopards in the park. The specific aims include: 1) conducting a population survey of the snow leopards in LNP, focusing on distribution and abundance; 2) assessing the status of prey species populations in the park; and 3) providing educational outreach programs on snow leopard conservation for local school children (K-8) living in the park. During the 2004 study period, snow leopard signs were observed (including pugmarks and scats) although somewhat fewer than in 2003. Similarly, the average herd size of the snow leopards' primary prey species in LNP (the Himalayan thar) was a bit lower than in 2003. There is speculation that the thar populations and the snow leopards may be moving to more remotes areas of the park perhaps in response to increasing pressure from domestic livestock grazing. This possibility is being addressed during the 2005 study period.
Keywords: status; snow; snow leopard; snow-leopard; leopard; population; Langtang; national; national park; National-park; park; Nepal; project; International; international snow leopard trust; International-Snow-Leopard-Trust; trust; program; biodiversity; research; study; Support; Islt; approach; Data; conservation; snow leopards; snow-leopards; leopards; survey; distribution; abundance; prey; prey species; prey-species; species; populations; programs; local; sign; pugmarks; scats; scat; primary; Himalayan; areas; area; Response; Pressure; domestic; domestic livestock; livestock; grazing
|
Namgay, K. (2007). Snow Leopard and Prey Population Conservation in Bhutan.
Abstract: Snow leopard conservation work in Bhutan dates back to 1999 and 2000 when the International Snow Leopard Trust-in collaboration with the Royal Government of Bhutan and World Wildlife Fund-initiated a training workshop. More than 30 government staff were trained in SLIMS survey techniques. As a part of the training exercise, a preliminary survey on snow leopard was also carried out using the SLIMS methods in Jigme Dorji Wangchuck National Park. Based on the survey results, we estimated there was a population of 100 snow leopards in the wild and 10,000 km2 of habitat. In 2005, World Wildlife Fund (WWF) organized the WWF/South Asia Regional Workshop on Snow leopard Conservation in Bhutan. Both regional (Bhutan, India, China, Nepal and Pakistan) and international experts revisited the snow leopard programs and developed a work plan for the overall conservation of the snow leopard in the region. This led to WWF's Regional Snow leopard Conservation Strategy. WWF is pleased to submit our final report to the International Snow Leopard Trust on the oneyear, $8,000 grant in support of Snow Leopard and Prey Population Conservation in Bhutan. With the support of the Snow Leopard Trust, we have made great strides towards achieving our goal for this project: To determine the current status of snow leopard and ungulate prey populations in prime snow leopard habitats. Major accomplishments and activities completed thanks to the generous support of the International Snow Leopard Trust include:
Signed of a Terms of Reference between Royal Government, International Snow Leopard Trust – India, World Wildlife Fund and International Snow Leopard Trust -US; Developed a joint revised project work plan; and Purchased basic field supplies and equipment needed for the surveys planned. Keywords: 2000; 30; activities; activity; asia; Bhutan; China; conservation; dates; Dorji; field; government; habitat; habitats; India; International; International-Snow-Leopard-Trust; international snow leopard trust; Jigme; Jigme-Dorji; leopard; leopards; methods; national; National-park; national park; Nepal; Pakistan; park; plan; population; populations; prey; program; programs; project; region; regional; Report; Slims; snow; snow-leopard; snow-leopards; snow leopard; snow leopards; staff; status; strategy; Support; survey; surveys; techniques; training; trust; ungulate; us; using; wild; wildlife; work; workshop; world-wildlife-fund; world wildlife fund; Wwf
|
Rasool, G. (1990). Population status of Wildlife in Khunjerab National Park. Tigerpaper, Xvii(4), 25–28. |
Shafiq, M. M., & Abid, A. (1998). Status of large mammal species in Khunjerab National Park. Pakistan Journal of Forestry, 48(1-4), 91–96.
Abstract: Study on the current status of large mammals species population was carried out in Khunjerab National Park, Northern Areas. The observation recorded showed that the population of Tibetan Red fox (Vulpes vulpes montana), Snow leopard (Uncia uncia), and Wolf (Canis lupus) have, though a bit, increased but are still in the rank of “Endangered”. While the population of Himalyan Ibex (Cpara ibex sibirica) is increasing more rapidly and their status is now “Common” in the Park. The limited population of Marcopolo sheep (Ovis ammon polii), Tibetan wild Ass (Equus hemionus kiang) and Brown bear (Urus arctos) is still under threat, and comes them under “Critical Endangered” category.
Keywords: Khunjerab-National-Park; large-mammals; endangered species; snow leopard; Uncia uncia; wolf; fox; ibex; sheep; bear; prey; predator; protected-area; Khunjerab; browse; national; park; large; mammals; endangered; species; uncia; protected; 560
|
Shrestha, B. (2008). Prey Abundance and Prey Selection by Snow Leopard (uncia uncia) in the Sagarmatha (Mt. Everest) National Park, Nepal.
Abstract: Predators have significant ecological impacts on the region's prey-predator dynamic and community structure through their numbers and prey selection. During April-December 2007, I conducted a research in Sagarmatha (Mt. Everest) National Park (SNP) to: i) explore population status and density of wild prey species; Himalayan tahr, musk deer and game birds, ii) investigate diet of the snow leopard and to estimate prey selection by snow leopard, iii) identify the pattern of livestock depredation by snow leopard, its mitigation, and raise awareness through outreach program, and identify the challenge and opportunities on conservation snow leopard and its co-existence with wild ungulates and the human using the areas of the SNP. Methodology of my research included vantage points and regular monitoring from trails for Himalayan tahr, fixed line transect with belt drive method for musk deer and game birds, and microscopic hair identification in snow leopard's scat to investigate diet of snow leopard and to estimate prey selection. Based on available evidence and witness accounts of snow leopard attack on livestock, the patterns of livestock depredation were assessed. I obtained 201 sighting of Himalayan tahr (1760 individuals) and estimated 293 populations in post-parturient period (April-June), 394 in birth period (July -October) and 195 November- December) in rutting period. In average, ratio of male to females was ranged from 0.34 to 0.79 and ratio of kid to female was 0.21-0.35, and yearling to kid was 0.21- 0.47. The encounter rate for musk deer was 1.06 and density was 17.28/km2. For Himalayan monal, the encounter rate was 2.14 and density was 35.66/km2. I obtained 12 sighting of snow cock comprising 69 individual in Gokyo. The ratio of male to female was 1.18 and young to female was 2.18. Twelve species (8 species of wild and 4 species of domestic livestock) were identified in the 120 snow leopard scats examined. In average, snow leopard predated most frequently on Himalayan tahr and it was detected in 26.5% relative frequency of occurrence while occurred in 36.66% of all scats, then it was followed by musk deer (19.87%), yak (12.65%), cow (12.04%), dog (10.24%), unidentified mammal (3.61%), woolly hare (3.01%), rat sp. (2.4%), unidentified bird sp. (1.8%), pika (1.2%), and shrew (0.6%) (Table 5.8 ). Wild species were present in 58.99% of scats whereas domestic livestock with dog were present in 40.95% of scats. Snow leopard predated most frequently on wildlife species in three seasons; spring (61.62%), autumn (61.11%) and winter (65.51%), and most frequently on domestic species including dog in summer season (54.54%). In term of relative biomass consumed, in average, Himalayan tahr was the most important prey species contributed 26.27% of the biomass consumed. This was followed by yak (22.13%), cow (21.06%), musk deer (11.32%), horse (10.53%), wooly hare (1.09%), rat (0.29%), pika (0.14%) and shrew (0.07%). In average, domestic livestock including dog were contributed more biomass in the diet of snow leopard comprising 60.8% of the biomass consumed whilst the wild life species comprising 39.19%. The annual prey consumption by a snow leopard (based on 2 kg/day) was estimated to be three Himalayan tahr, seven musk deer, five wooly hare, four rat sp., two pika, one shrew and four livestock. In the present study, the highest frequency of attack was found during April to June and lowest to July to November. The day of rainy and cloudy was the more vulnerable to livestock depredation. Snow leopard attacks occurred were the highest at near escape cover such as shrub land and cliff. Both predation pressure on tahr and that on livestock suggest that the development of effective conservation strategies for two threatened species (predator and prey) depends on resolving conflicts between people and predators. Recently, direct control of free – ranging livestock, good husbandry and compensation to shepherds may reduce snow leopard – human conflict. In long term solution, the reintroduction of blue sheep at the higher altitudes could also “buffer” predation on livestock.
Keywords: project; snow; snow leopard; snow-leopard; leopard; network; conservation; program; prey; abundance; selection; uncia; Uncia uncia; Uncia-uncia; Sagarmatha; national; national park; National-park; park; Nepal; resource; predators; predator; ecological; impact; region; community; structure; number; research; population; status; density; densities; wild; prey species; prey-species; species; Himalayan; tahr; musk; musk-deer; deer; game; birds; diet; livestock; livestock depredation; livestock-depredation; depredation; awareness; co-existence; ungulates; ungulate; Human; using; areas; area; monitoring; transect; Hair; identification; scat; attack; patterns; sighting; 1760; populations; birth; Male; Female; young; domestic; domestic livestock; 120; scats; yak; Dog; pika; wildlife; Seasons; winter; horse; study; cover; land; predation; Pressure; development; strategy; threatened; threatened species; threatened-species; conflicts; conflict; people; control; husbandry; compensation; reintroduction; blue; blue sheep; blue-sheep; sheep; free ranging
|
The Snow Leopard Conservancy. (2002). A Learning Tour of the CBN (Corbett, Nainital and Binsar) Eco-tourism Initiative Sites by Villagers from Hemis National Park and the Surrounding Area (18-28th November 2002) (R. Wangchuk, & J. Dadul, Eds.) (Vol. SLC Field Document Series No 5). Leh, Ladakh, India.
Abstract: Ladakh lies between the Great Himalayas and the formidable Karakoram mountains.
Its unique landscape and rich cultural heritage have been a great attraction to tourists all over the world. Apart from its uniqueness it has a rich Trans-Himalayan bio-diversity and is home to the rare and elusive snow leopard. It opened to tourism in 1974 with a handful of tourists and has gone up to the present number of about 18,000 visitors annually. Ecotourism started in Ladakh in mid 80s in the form of conservation of traditional architecture when local communities realized the importance of their rich culture and traditions being valued by the visiting tourists. However, while tourism became a major source of income to people in Leh, most of the benefits stayed with outside (Delhi) based travel agents thus leaving out the rural masses. During the last three years Snow Leopard Conservancy and The Mountain Institute have been initiating ecotourism activities with local communities in the Hemis National Park as an alternate livelihood and an indirect way to compensate losses of livestock from predatory animals. However, local people while venturing into such new initiatives have tended to be like blind men that are being led by NGO's so that they do not stumble along their paths. Keywords: Ladakh; Himalayas; Himalaya; Karakoram; mountains; mountain; landscape; tourists; trans-himalayan; transhimalayan; biodiversity; home; snow; snow leopard; snow-leopard; leopard; tourism; number; ecotourism; 80; conservation; traditional; local; community; Culture; income; people; leh; travel; rural; Snow Leopard Conservancy; ecotourism activities; ecotourism-activities; activities; activity; Hemis; national; national park; National-park; park; livelihood; loss; livestock; Animals; Animal; local people; NGO's; eco-tourism; villagers; area
|
The Snow Leopard Conservancy. (2003). Local People's Attitudes toward Wildlife Conservation in the Hemis National Park, with Special Reference to the Conservation of Large Predators (Vol. 7). Sonoma, California. |