Ahmad, A. (1993). Environmental impact assessment in the Himalayas: An ecosystem approach (Vol. 22).
Abstract: The impact of human activities on the Himalayan bio-geophysical, socioeconomic and cultural environments has been analyzed. The main man-induced activities which threaten the equilibrium of Himalayan Mountain ecosystems are unplanned land use, cultivation on steep slopes, overgrazing, major engineering activities, overexploitation of village or community forests, shifting cultivation, unplanned tourism and urbanization. Cold desert conditions prevail in 41 692 square kilometers of the northwestern Himalayas. The geomorphological conditions and arrested succession, checking the climax formation, are major causes of landslides. Sedimentation, changes in surface and groundwater hydrology and clearfelling of broadleaved plant species have caused eutrophication, drying up of natural springs and receding of glaciers. Wild fauna like Musk deer (Moschus mischiferus) and Snow Leopard (Panthera uncial) are now under threat due to changes in their habitats. Population pressure, migration and settlements are major causes of poverty and agglomeration. And jeopardize the Himalayan environment. Based on detailed environmental impact assessment, an ecosystem approach has been proposed for resources conservation and environmentally sustainable development of the Himalayas.
|
Ahmad, A., Rawat, J. S., & Rai, S. C. (1990). An Analysis of the Himalayan Environment and Guidelines for its Management and Ecologically Sustainable Development. Environmentalist, 10(4), 281–298.
Abstract: The impacts of human activities on the bio-geophysical and socio-economic environment of the Himalayas are analysed. The main man-induced activities which have accelerated ecological degradation and threatened the equilibrium of Himalayan mountain ecosystems are stated as: unplanned land use, cultivation on steep slopes, overgrazing, major engineering activities, over-exploitation of village or community forests, lopping of broad leaved plant species, shifting cultivation (short cycle) in north-east India, tourism and recreation. The geomorphological conditions are major factors responsible for landslides which cause major havoc every year in the area. Wild fauna, like musk deer and the snow leopard are now under threat partially due to changes in their habitat and the introduction of exotic plant species. Population pressure and migration are major factors responsible for poverty in the hills. The emigration of the working male population has resulted in the involvement of women as a major work-force. Guidelines, with special emphasis on the application of environmental impact assessments for the management of the Himalayas, are proposed. -from Authors
|
Ale, S., Shrestha, B., and Jackson, R. (2014). On the status of Snow Leopard Panthera Uncia (Schreber 1775) in Annapurna, Nepal. Journal of Threatened Taxa, (6(3)), 5534–5543.
|
Anwar, M., Jackson, R., Nadeem, M., Janecka, J., Hussain, S., Beg, M., Muhammad, G., and Qayyum, M. (2011). Food habits of the snow leopard Panthera uncia (Schreber, 1775) in Baltistan, Northern Pakistan. European Journal of Wildlife Research, (3 March), 1–7.
Abstract: The snow leopard (Panthera uncia) inhabits the high, remote mountains of Pakistan from where very little information is available on prey use of this species. Our study describes the food habits of the snow leopard in the Himalayas and Karakoram mountain ranges in Baltistan, Pakistan. Ninety-five putrid snow leopard scats were collected from four sites in Baltistan. Of these, 49 scats were genetically confirmed to have originated from snow leopards. The consumed prey was identified on the basis of morphological characteristics of hairs recovered from the scats. It was found that most of the biomass consumed (70%) was due to domestic livestock viz. sheep (23%), goat (16%), cattle (10%), yak (7%), and cattle–yak hybrids (14%). Only 30% of the biomass was due to wild species, namely Siberian ibex (21%), markhor (7%), and birds (2%). Heavy predation on domestic livestock appeared to be the likely cause of conflict with the local inhabitants. Conservation initiatives should focus on mitigating this conflict by minimizing livestock losses.
|
Bhatnagar, Y. V. (2008). Relocation from wildlife reserves in the Greater and Trans-Himalayas: Is it necessary? (Vol. 6).
Abstract: The Greater and Trans-Himalayan tracts are cold deserts that have severe seasonal and resource scarce environments. Covering the bulk of Indian Himalayas, they are a rich repository of biodiversity values and ecosystem services. The region has a large protected area (PA) network which has not been completely effective in conserving these unique values. The human population densities are much lower (usually < 1 per sq km) than in most other parts of the country (over 300 to a sq km). However, even such small populations can come into conflict with strict PA laws that demand large inviolate areas, which can mainly be achieved through relocation of the scattered settlements. In this paper, I reason that in this landscape relocation is not a tenable strategy for conservation due to a variety of reasons. The primary ones are that wildlife, including highly endangered ones are pervasive in the larger landscape (unlike the habitat 'islands' of the forested ecosystems) and existing large PAs usually encompass only a small proportion of this range. Similarly, traditional use by people for marginal cultivation, biomass extraction and pastoralism is also as pervasive in this landscape. There does exist pockets of conflict and these are probably increasing owing to a variety of changes relating to modernisation. However, scarce resources, the lack of alternatives and the traditional practice of clear-cut division of all usable areas and pastures between communities make resettlement of people outside PAs extremely difficult. It is reasoned that given the widespread nature of the wildlife and pockets of relatively high density, it is important to prioritise these smaller areas for conservation in a scenario where they form a mosaic of small 'cores' that are more effectively maintained with local support and that enable wildlife to persist. These ideas have recently gained widespread acceptance in both government and conservation circles and may soon become part of national strategy for these areas.
|
Burrard, G. (1925). Big Game Hunting in the Himalayas and Tibet. London: H. Jenkinns.
|
Chetri, M., Odden, M., Devineau, O., McCarthy, T., Wegge, P. (2020). Multiple factors influence local perceptions of snow leopards and
Himalayan wolves in the central Himalayas, Nepal. PeerJ, , 1–18.
Abstract: An understanding of local perceptions of carnivores is
important for conservation and management planning. In the central
Himalayas, Nepal, we interviewed 428 individuals from 85 settlements
using a semi-structured questionnaire to quantitatively assess local
perceptions and tolerance of snow leopards and wolves. We used
generalized linear mixed effect models to assess influential factors,
and found that tolerance of snow leopards was much higher than of
wolves. Interestingly, having experienced livestock losses had a minor
impact on perceptions of the carnivores. Occupation of the respondents
had a strong effect on perceptions of snow leopards but not of wolves.
Literacy and age had weak impacts on snow leopard perceptions, but the
interaction among these terms showed a marked effect, that is, being
illiterate had a more marked negative impact among older respondents.
Among the various factors affecting perceptions of wolves, numbers of
livestock owned and gender were the most important predictors. People
with larger livestock herds were more negative towards wolves. In terms
of gender, males were more positive to wolves than females, but no such
pattern was observed for snow leopards. People’s negative perceptions
towards wolves were also related to the remoteness of the villages.
Factors affecting people’s perceptions could not be generalized for the
two species, and thus need to be addressed separately. We suggest future
conservation projects and programs should prioritize remote settlements.
|
Chundawat, R. S. (1993). Studies on Snow Leopard and Prey Species in Hemis National Park (Vol. xi). Seattle: Islt.
|
Fox, J. L., Sinha, S. P., Chundawat, R. S., & Das, P. K. (1991). Status of the snow leopard Panthera uncia in Northwest India. Biological Conservation, 55(3), 283–298.
Abstract: Evidence of snow leopard presence was most abundant in C Ladakh, decreased southward toward the crest of the Himalaya, and was least on the S side of the main Himalaya. Prey populations, primarily blue sheep Pseudois nayaur and Asiatic ibex Capra ibex, were also more plentiful in the areas surveyed to the N of the main Himalaya. Perhaps 400 snow leopard occur throughout NW India. The stronghold of this species in India is apparently the trans- Himalayan ranges in Ladakh where new parks and reserves are being established, some in association with a snow leopard recovery programme of the state of Jammu and Kashmir and a 'Project Snow Leopard' of the central Indian government. Because of the generally low density of snow leopard, conservation measures must also be considered within the large areas of its range lying outside parks and reserves. -from Authors
|
Gaston, A. J., Garson, P. J., & Hunter, M. L. (1983). The status and conservation of forest wildlife in Himachal Pradesh, Western Himalayas. Biological Conservation, 27(4), 291–314.
Abstract: The wildlife of temperate forest ecosystems in the Western Himalayas is threatened by destruction of habitat and hunting. Two species of pheasants occuring in the survey area (western tragopan Tragopan melanocephalus and cheer pheasant Catreus wallichi) are listed in the IUCN Red Data Book (1979). Small populations of both species were located and information on their habitat requirements was obtained. The status of most large mammal species appears to be precarious, with the populations encountered being small and fragmented. Species formerly common but now rare include Himalayan brown bear Ursus arctos, Himalayan tahr Hemitragus jemlahicus and musk deer Moschus moschiferus. The snow leopard Panthera uncia has disappeared completely from the area.-from Authors
|