Home | << 1 2 >> |
![]() |
Records | |||||
---|---|---|---|---|---|
Author ![]() |
Atzeni, L., Cushman, S. A., Bai, D., Wang, J., Chen, P., Shi, K., Riordan, P. | ||||
Title | Meta-replication, sampling bias, and multi-scale model selection: A case study on snow leopard (Panthera uncia) in western China. | Type | Journal Article | ||
Year | 2020 | Publication | Ecology and Evolution | Abbreviated Journal | |
Volume | Issue | Pages | 1-27 | ||
Keywords | MaxEnt, meta-replication, multi-scale, Panthera uncia, sampling bias, scale selection, snow leopard, species distribution model | ||||
Abstract | Replicated multiple scale species distribution models (SDMs) have become increasingly important to identify the correct variables determining species distribution and their influences on ecological responses. This study explores multi-scale habitat relationships of the snow leopard (Panthera uncia) in two study areas on the Qinghai–Tibetan Plateau of western China. Our primary objectives were to evaluate the degree to which snow leopard habitat relationships, expressed by predictors, scales of response, and magnitude of effects, were consistent across study areas or locally landcape-specific. We coupled univariate scale optimization and the maximum entropy algorithm to produce multivariate SDMs, inferring the relative suitability for the species by ensembling top performing models. We optimized the SDMs based on average omission rate across the top models and ensembles’ overlap with a simulated reference model. Comparison of SDMs in the two study areas highlighted landscape-specific responses to limiting factors. These were dependent on the effects of the hydrological network, anthropogenic features, topographic complexity, and the heterogeneity of the landcover patch mosaic. Overall, even accounting for specific local differences, we found general landscape attributes associated with snow leopard ecological requirements, consisting of a positive association with uplands and ridges, aggregated low-contrast landscapes, and large extents of grassy and herbaceous vegetation. As a means to evaluate the performance of two bias correction methods, we explored their effects on three datasets showing a range of bias intensities. The performance of corrections depends on the bias intensity; however, density kernels offered a reliable correction strategy under all circumstances. This study reveals the multi-scale response of snow leopards to environmental attributes and confirms the role of meta-replicated study designs for the identification of spatially varying limiting factors. Furthermore, this study makes important contributions to the ongoing discussion about the best approaches for sampling bias correction. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1616 | |||
Permanent link to this record | |||||
Author ![]() |
Augugliaro, C., Christe, P., Janchivlamdan, C., Baymanday, H., Zimmermann, F. | ||||
Title | Patterns of human interaction with snow leopard and co-predators in the Mongolian western Altai: Current issues and perspectives | Type | Journal Article | ||
Year | 2020 | Publication | Global Ecology and Conservation | Abbreviated Journal | |
Volume | 24 | Issue | Pages | 1-21 | |
Keywords | Depredation Human-carnivores interaction Mongolian altai Snow leopard Wolf Wolverine | ||||
Abstract | Large carnivores can cause considerable economic damage, mainly due to livestock depredation. These conficts instigate negative attitude towards their conservation, which could in the extreme case lead to retaliatory killing. Here we focus on the snow leopard (Panthera uncia), a species of conservation concern with particularly large spatial requirements. We conducted the study in the Bayan Olgii province, one of the poorest provinces of Mongolia, where the majority of the human population are traditional herders. We conducted a survey among herders (N 261) through a semi-structured questionnaire with the aim to assess: the current and future herding practices and prevention measures, herders’ perceptions and knowledge of the environmental protection and hunting laws; the perceived livestock losses to snow leopard, wolf (Canis lupus), and wolverine (Gulo gulo), as well as to non-predatory factors; the key factors affecting livestock losses to these three large carnivores; and, finally, the attitudes towards these three large carnivores. Non-predatory causes of mortality were slightly higher than depredation cases, representing 4.5% and 4.3% of livestock holdings respectively. While no depredation of livestock was reported from wolverines, snow leopard and wolf depredation made up 0.2% and 4.1% of total livestock holdings, respectively. Herders’ attitudes towards the three large carnivores were negatively affected by the magnitude of the damages since they had a positive overall attitude towards both snow leopard and wolverine, whereas the attitude towards wolf was negative. We discuss conservation and management options to mitigate herder-snow leopard impacts. To palliate the negative consequences of the increasing trend in livestock numbers, herd size reduction should be encouraged by adding economic value to the individual livestock and/or by promoting alternative income and/or ecotourism. Furthermore, co-management between government and stakeholders would help tackle this complex problem, with herders playing a major role in the development of livestock management strategies. Traditional practices, such as regularly shifting campsites and using dogs and corrals at night, could reduce livestock losses caused by snow leopards. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1627 | |||
Permanent link to this record | |||||
Author ![]() |
Bagchi, S., Sharma, R. K., Bhatnagar, Y.V. | ||||
Title | Change in snow leopard predation on livestock after revival of wild prey in the Trans-Himalaya | Type | Journal Article | ||
Year | 2020 | Publication | Wildlife Biology | Abbreviated Journal | |
Volume | Issue | Pages | 1-11 | ||
Keywords | arid ecosystems, diet analysis, human-wildlife conflict, Panthera, predator, rangeland | ||||
Abstract | Human–wildlife conflict arising from livestock-losses to large carnivores is an important challenge faced by conservation. Theory of prey–predator interactions suggests that revival of wild prey populations can reduce predator’s dependence on livestock in multiple-use landscapes. We explore whether 10-years of conservation efforts to revive wild prey could reduce snow leopard’s Panthera uncia consumption of livestock in the coupled human-and-natural Trans-Himalayan ecosystem of northern India. Starting in 2001, concerted conservation efforts at one site (intervention) attempted recovery of wild- prey populations by creating livestock-free reserves, accompanied with other incentives (e.g. insurance, vigilant herding). Another site, 50km away, was monitored as status quo without any interventions. Prey remains in snow leopard scats were examined periodically at five-year intervals between 2002 and 2012 to determine any temporal shift in diet at both sites to evaluate the effectiveness of conservation interventions. Consumption of livestock increased at the status quo site, while it decreased at the intervention-site. At the intervention-site, livestock-consumption reduced during 2002–2007 (by 17%, p = 0.06); this effect was sustained during the next five-year interval, and it was accompanied by a persistent increase in wild prey populations. Here we also noted increased predator populations, likely due to immigration into the study area. Despite the increase in the predator population, there was no increase in livestock-consumption. In contrast, under status quo, dependence on livestock increased during both five-year intervals (by 7%, p=0.08, and by 16%, p=0.01, respectively). These contrasts between the trajectories of the two sites suggest that livestock-loss can potentially be reduced through the revival of wild prey. Further, accommodating counter-factual scenarios may be an important step to infer whether conservation efforts achieve their targets, or not. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1623 | |||
Permanent link to this record | |||||
Author ![]() |
Bhatia, S., Suryawanshi, K., Redpath, S. M., Mishra, C | ||||
Title | Understanding people's responses toward predators in the Indian Himalaya | Type | Journal Article | ||
Year | 2020 | Publication | Animal Conservation | Abbreviated Journal | |
Volume | Issue | Pages | 1-8 | ||
Keywords | human-wildlife conflict; human attitudes to wildlife; value orientation; carnivores; tolerance; human-wildlife relationships; risk perception; Himalaya | ||||
Abstract | Research on human–wildlife interactions has largely focused on the magnitude of wildlife‐caused damage, and the patterns and correlates of human attitudes and behaviors. We assessed the role of five pathways through which various correlates potentially influence human responses toward wild animals, namely, value orientation, social interactions (i.e. social cohesion and support), dependence on resources such as agriculture and livestock, risk perception and nature of interaction with the wild animal. We specifically evaluated their influence on people's responses toward two large carnivores, the snow leopard Panthera uncia and the wolf Canis lupus in an agropastoral landscape in the Indian Trans‐Himalaya. We found that the nature of the interaction (location, impact and length of time since an encounter or depredation event), and risk perception (cognitive and affective evaluation of the threat posed by the animal) had a significant influence on attitudes and behaviors toward the snow leopard. For wolves, risk perception and social interactions (the relationship of people with local institutions and inter‐community dynamics) were significant. Our findings underscore the importance of interventions that reduce people's threat perceptions from carnivores, improve their connection with nature and strengthen the conservation capacity of local institutions especially in the context of wolves. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1630 | |||
Permanent link to this record | |||||
Author ![]() |
Chetri, M., Odden, M., Devineau, O., McCarthy, T., Wegge, P. | ||||
Title | Multiple factors influence local perceptions of snow leopards and Himalayan wolves in the central Himalayas, Nepal. | Type | Journal Article | ||
Year | 2020 | Publication | PeerJ | Abbreviated Journal | |
Volume | Issue | Pages | 1-18 | ||
Keywords | Panthera uncia, Canis lupus chanco, Perceptions, Large carnivores, Trans-Himalayas | ||||
Abstract | An understanding of local perceptions of carnivores is important for conservation and management planning. In the central Himalayas, Nepal, we interviewed 428 individuals from 85 settlements using a semi-structured questionnaire to quantitatively assess local perceptions and tolerance of snow leopards and wolves. We used generalized linear mixed effect models to assess influential factors, and found that tolerance of snow leopards was much higher than of wolves. Interestingly, having experienced livestock losses had a minor impact on perceptions of the carnivores. Occupation of the respondents had a strong effect on perceptions of snow leopards but not of wolves. Literacy and age had weak impacts on snow leopard perceptions, but the interaction among these terms showed a marked effect, that is, being illiterate had a more marked negative impact among older respondents. Among the various factors affecting perceptions of wolves, numbers of livestock owned and gender were the most important predictors. People with larger livestock herds were more negative towards wolves. In terms of gender, males were more positive to wolves than females, but no such pattern was observed for snow leopards. People’s negative perceptions towards wolves were also related to the remoteness of the villages. Factors affecting people’s perceptions could not be generalized for the two species, and thus need to be addressed separately. We suggest future conservation projects and programs should prioritize remote settlements. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1615 | |||
Permanent link to this record | |||||
Author ![]() |
Din, J. U., Nawaz, M. A., Norma-Rashid, Y., Ahmad, F., Hussain, K., Ali, H., Adli, D., S., H. | ||||
Title | Ecosystem Services in a Snow Leopard Landscape: A Comparative Analysis of Two High-elevation National Parks in the Karakoram-Pamir | Type | Journal Article | ||
Year | 2020 | Publication | Bio One | Abbreviated Journal | |
Volume | Issue | Pages | 11-19 | ||
Keywords | ecosystem services; economic value; Karakoram; Pamir; Khunjerab; national park; Qurumbar | ||||
Abstract | The high-elevation mountain ecosystems in the Karakoram and Pamir mountain ranges encompass enchanting landscapes, harbor unique biodiversity, and are home to many indigenous pastoral societies that rely onecosystem services for their survival. However, our understanding of the value of ecosystem services to a household economy is limited. This information is essential in devising sustainable development strategies and thus merits consideration. In this preliminary study, we attempted to assess and compare the value of selected ecosystem Khunjerab and Qurumbar National Parks (KNP and QNP) in the services of the KNP and QNP) in the Karakoram–Pamir in northern Pakistan using market-based and value transfer methods. Our results indicated that the economic benefits derived from the 2 high-elevation protected areas were US$ 4.6 million (QNP) and US$ 3.8 million (KNP) per year, translating into US$ 5955 and US$ 8912 per household per year, respectively. The monetary benefits from provisioning services constituted about 93% in QNP and 48% in KNP, which vividly highlights the prominence of the economic benefits generated from the protected areas for the welfare of disadvantaged communities. Together with the regulatory and cultural services valued in this study, the perceived economic impact per household per year was 10–15 times higher than the mean household income per year. Considering the limited livelihood means and escalating poverty experienced by buffer zone communities, these values are substantial. We anticipate that communities’ dependency on resources will contribute to increased degradation of ecosystems. We propose reducing communities’ dependency on natural resources by promoting sustainable alternative livelihood options and recognizing ecosystem services in cost–benefit analyses when formulating future policies. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1631 | |||
Permanent link to this record | |||||
Author ![]() |
Durbach, I., Borchers, D., Sutherland, C., Sharma, K. | ||||
Title | Fast, flexible alternatives to regular grid designs for spatial capture–recapture. | Type | Research Article | ||
Year | 2020 | Publication | Methods in Ecology and Evolution | Abbreviated Journal | |
Volume | Issue | Pages | 1-13 | ||
Keywords | camera trap, population ecology,sampling, spatial capture-recapture, surveys | ||||
Abstract | Spatial capture–recapture (SCR) methods use the location of detectors (camera traps, hair snares and live-capture traps) and the locations at which animals were detected (their spatial capture histories) to estimate animal density. Despite the often large expense and effort involved in placing detectors in a landscape, there has been relatively little work on how detectors should be located. A natural criterion is to place traps so as to maximize the precision of density estimators, but the lack of a closed-form expression for precision has made optimizing this criterion computationally demanding. 2. Recent results by Efford and Boulanger (2019) show that precision can be well approximated by a function of the expected number of detected individuals and expected number of recapture events, both of which can be evaluated at low computational cost. We use these results to develop a method for obtaining survey designs that optimize this approximate precision for SCR studies using count or binary proximity detectors, or multi-catch traps. 3. We show how the basic design protocol can be extended to incorporate spatially varying distributions of activity centres and animal detectability. We illustrate our approach by simulating from a camera trap study of snow leopards in Mongolia and comparing estimates from our designs to those generated by regular or optimized grid designs. Optimizing detector placement increased the number of detected individuals and recaptures, but this did not always lead to more precise density estimators due to less precise estimation of the effective sampling area. In most cases, the precision of density estimators was comparable to that obtained with grid designs, with improvement in some scenarios where approximate CV(¬D) < 20% and density varied spatially. 4. Designs generated using our approach are transparent and statistically grounded. They can be produced for survey regions of any shape, adapt to known information about animal density and detectability, and are potentially easier and less costly to implement. We recommend their use as good, flexible candidate designs for SCR surveys when reasonable knowledge of model parameters exists. We provide software for researchers to construct their own designs, in the form of updates to design functions in the r package oSCR. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1618 | |||
Permanent link to this record | |||||
Author ![]() |
Farrington, J., Tsering, D. | ||||
Title | Snow leopard distribution in the Chang Tang region of Tibet, China | Type | Journal Article | ||
Year | 2020 | Publication | Global Ecology and Conservation | Abbreviated Journal | |
Volume | 23 | Issue | Pages | ||
Keywords | |||||
Abstract | In 2006 and 2007, the authors conducted human-wildlife conflict surveys in the Tibet Autonomous Region’s (TAR) Shainza, Nyima, and Tsonyi Counties, located in the TAR’s remote Chang Tang region. At this time, prior knowledge of the snow leopard in this vast 700,000 km2 region was limited to just eight firsthand snow leopard sign and conflict location records and 15 secondhand records. These surveys revealed a previously undocumented and growing problem of human-snow leopard conflict. The 2007 survey also yielded 39 new snow leopard conflict incident locations and 24 new snow leopard sign locations. Next, snow leopard telephone interviews and mapping exercises were conducted with Tibet Forestry Bureau staff that yielded an additional 63 and 144 new snow leopard conflict and sighting location records, respectively. These 270 new snow leopard location records, together with 39 records collected by other observers from 1988 to 2009, were compiled into a snow leopard distribution map for the Chang Tang. This effort greatly expanded knowledge of the snow leopard’s distribution in this region which remains one of the least understood of the snow leopard’s key range areas. New knowledge gained on snow leopard distribution in the Chang Tang through this exercise will help identify human-snow leopard conflict hot spots and inform design of human-snow leopard conflict mitigation and conservation strategies for northwest Tibet. Nevertheless, extensive additional field verification work will be required to definitively delineate snow leopard distribution in the Chang Tang. Importantly, since 2006, a number of major transportation infrastructure projects have made the Chang Tang more accessible, including paving of highways, new railroads, and new airports. This has led to a greatly increased number of tourists visiting western Tibet, particularly Mt. Kailash and Lake Manasarovar. At the same time, large areas of the Chang Tang have been fenced for livestock pastures as part of government initiatives to allocate pasturelands to individual families. All three of these developments have a large potential to cause disturbance to snow leopards and their prey species, including by hindering their movements and degrading their habitat. Therefore, future conservation measures in the Chang Tang will need to insure that development activities and the growing number of visitors to the Chang Tang do not adversely affect the distribution of snow leopards and their prey species or directly degrade their habitat. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | SLN @ rakhee @ | Serial | 1601 | ||
Permanent link to this record | |||||
Author ![]() |
Filla, M., Lama, R. P., Ghale, T. R., Signer, J., Filla, T., Aryal, R. R., Heurich, M., Waltert, M., Balkenhol, N., Khorozyan, I. | ||||
Title | In the shadows of snow leopards and the Himalayas: density and habitat selection of blue sheep in Manang, Nepal | Type | Journal Article | ||
Year | 2020 | Publication | Ecology and Evolution | Abbreviated Journal | |
Volume | 2021 | Issue | 11 | Pages | 108-122 |
Keywords | Annapurna Conservation Area, bharal, Panthera uncia, predator-prey, Pseudois nayaur | ||||
Abstract | There is a growing agreement that conservation needs to be proactive and pay increased attention to common species and to the threats they face. The blue sheep (Pseudois nayaur) plays a key ecological role in sensitive high-altitude ecosystems of Central Asia and is among the main prey species for the globally vulnerable snow leopard (Panthera uncia). As the blue sheep has been increasingly exposed to human pressures, it is vital to estimate its population dynamics, protect the key populations, identify important habitats, and secure a balance between conservation and local livelihoods. We conducted a study in Manang, Annapurna Conservation Area (Nepal), to survey blue sheep on 60 transects in spring (127.9 km) and 61 transects in autumn (134.7 km) of 2019, estimate their minimum densities from total counts, compare these densities with previous estimates, and assess blue sheep habitat selection by the application of generalized additive models (GAMs). Total counts yielded minimum density estimates of 6.0–7.7 and 6.9–7.8 individuals/km2 in spring and autumn, respectively, which are relatively high compared to other areas. Elevation and, to a lesser extent, land cover indicated by the normalized difference vegetation index (NDVI) strongly affected habitat selection by blue sheep, whereas the effects of anthropogenic variables were insignificant. Animals were found mainly in habitats associated with grasslands and shrublands at elevations between 4,200 and 4,700 m. We show that the blue sheep population size in Manang has been largely maintained over the past three decades, indicating the success of the integrated conservation and development efforts in this area. Considering a strong dependence of snow leopards on blue sheep, these findings give hope for the long-term conservation of this big cat in Manang. We suggest that long-term population monitoring and a better understanding of blue sheep–livestock interactions are crucial to maintain healthy populations of blue sheep and, as a consequence, of snow leopards. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | SLN @ rakhee @ | Serial | 1683 | ||
Permanent link to this record | |||||
Author ![]() |
Hameed, S., Din, J. U., Ali, H., Kabir, M., Younas, M., Rehman, E. U., Bari, F., Hao, W., Bischof, R., Nawaz, M. A. | ||||
Title | Identifying priority landscapes for conservation of snow leopards in Pakistan | Type | Journal Article | ||
Year | 2020 | Publication | Plos One | Abbreviated Journal | |
Volume | Issue | Pages | 1-20 | ||
Keywords | |||||
Abstract | Pakistan’s total estimated snow leopard habitat is about 80,000 km2 of which about half is considered prime habitat. However, this preliminary demarcation was not always in close agreement with the actual distribution the discrepancy may be huge at the local and regional level. Recent technological developments like camera trapping and molecular genetics allow for collecting reliable presence records that could be used to construct realistic species distribution based on empirical data and advanced mathematical approaches like MaxEnt. The current study followed this approach to construct an accurate distribution of the species in Pakistan. Moreover, movement corridors, among different landscapes, were also identified through circuit theory. The probability of habitat suitability, generated from 98 presence points and 11 environmental variables, scored the snow leopard’s assumed range in Pakistan, from 0 to 0.97. A large portion of the known range represented low-quality habitat, including areas in lower Chitral, Swat, Astore, and Kashmir. Conversely, Khunjerab, Misgar, Chapursan, Qurumber, Broghil, and Central Karakoram represented high-quality habitats. Variables with higher contributions in the MaxEnt model were precipitation during the driest month (34%), annual mean temperature (19.5%), mean diurnal range of temperature (9.8%), annual precipitation (9.4%), and river density (9.2). The model was validated through receiver operating characteristic (ROC) plots and defined thresholds. The average test AUC in Maxent for the replicate runs was 0.933 while the value of AUC by ROC curve calculated at 0.15 threshold was 1.00. These validation tests suggested a good model fit and strong predictive power. The connectivity analysis revealed that the population in the Hindukush landscape appears to be more connected with the population in Afghani- stan as compared to other populations in Pakistan. Similarly, the Pamir-Karakoram population is better connected with China and Tajikistan, while the Himalayan population was connected with the population in India. Based on our findings we propose three model landscapes to be considered under the Global Snow Leopard Ecosystem Protection Program (GSLEP) agenda as regional priority areas, to safeguard the future of the snow leopard in Pakistan and the region. These landscapes fall within mountain ranges of the Himalaya, Hindu Kush and Karakoram-Pamir, respectively. We also identified gaps in the existing protected areas network and suggest new protected areas in Chitral and Gilgit-Baltistan to protect critical habitats of snow leopard in Pakistan. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1617 | |||
Permanent link to this record | |||||
Author ![]() |
Johansson, O., Ausilio, G., Low, M., Lkhagvajav, P., Weckworth, B., Sharma, K. | ||||
Title | The timing of breeding and independence for snow leopard females and their cubs. | Type | Journal Article | ||
Year | 2020 | Publication | Mammalian Biology | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | Age of independence; Life-history trade-offs; Panthera uncia; Parental care; Pre-dispersal behavior; Separation; Subadult | ||||
Abstract | Significant knowledge gaps persist on snow leopard demography and reproductive behavior. From a GPS-collared population in Mongolia, we estimated the timing of mating, parturition and independence. Based on three mother–cub pairs, we describe the separation phase of the cub from its mother as it gains independence. Snow leopards mated from January–March and gave birth from April–June. Cubs remained with their mother until their second winter (20–22 months of age) when cubs started showing movements away from their mother for days at a time. This initiation of independence appeared to coincide with their mother mating with the territorial male. Two female cubs remained in their mothers’ territory for several months after initial separation, whereas the male cub quickly dispersed. By comparing the relationship between body size and age of independence across 11 solitary, medium-to-large felid species, it was clear that snow leopards have a delayed timing of separation compared to other species. We suggest this may be related to their mating behavior and the difficulty of the habitat and prey capture for juvenile snow leopards. Our results, while limited, provide empirical estimates for understanding snow leopard ecology and for parameterizing population models. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1613 | |||
Permanent link to this record | |||||
Author ![]() |
Johansson, O., Samelius, G., Wikberg, E, Chapron, G., Mishra, C., Low, M | ||||
Title | Identification errors in camera- trap studies result in systematic population overestimation | Type | Journal Article | ||
Year | 2020 | Publication | Scientific Reports | Abbreviated Journal | |
Volume | 10 | Issue | 6393 | Pages | 1-10 |
Keywords | |||||
Abstract | Reliable assessments of animal abundance are key for successful conservation of endangered species. For elusive animals with individually-unique markings, camera-trap surveys are a benchmark standard for estimating local and global population abundance. Central to the reliability of resulting abundance estimates is the assumption that individuals are accurately identified from photographic captures. To quantify the risk of individual misidentification and its impact on population abundance estimates we performed an experiment under controlled conditions in which 16 captive snow leopards (Panthera uncia) were camera-trapped on 40 occasions and eight observers independently identified individuals and recaptures. Observers misclassified 12.5% of all capture occasions, resulting in systematically inflated population abundance estimates on average by one third (mean ± SD = 35 ± 21%). Our results show that identifying individually-unique individuals from camera-trap photos may not be as reliable as previously believed, implying that elusive and endangered species could be less abundant than current estimates indicate. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | SLN @ rakhee @ | Serial | 1496 | ||
Permanent link to this record | |||||
Author ![]() |
Johansson, O., Ullman, K., Lkhagvajav, P., Wiseman, M., Malmsten, J., Leijon, M. | ||||
Title | Detection and Genetic Characterization of Viruses Present in Free-Ranging Snow Leopards Using Next-Generation Sequencing | Type | Journal Article | ||
Year | 2020 | Publication | Frontiers in Veterinary Science | Abbreviated Journal | |
Volume | 7 | Issue | 645 | Pages | 1-9 |
Keywords | snow leopard, free-ranging, virome, Mongolia, rectal swabs, next-generating sequencing, Panthera unica | ||||
Abstract | Snow leopards inhabit the cold, arid environments of the high mountains of South and Central Asia. These living conditions likely affect the abundance and composition of microbes with the capacity to infect these animals. It is important to investigate the microbes that snow leopards are exposed to detect infectious disease threats and define a baseline for future changes that may impact the health of this endangered felid. In this work, next-generation sequencing is used to investigate the fecal (and in a few cases serum) virome of seven snow leopards from the Tost Mountains of Mongolia. The viral species to which the greatest number of sequences reads showed high similarity was rotavirus. Excluding one animal with overall very few sequence reads, four of six animals (67%) displayed evidence of rotavirus infection. A serum sample of a male and a rectal swab of a female snow leopard produced sequence reads identical or closely similar to felid herpesvirus 1, providing the first evidence that this virus infects snow leopards. In addition, the rectal swab from the same female also displayed sequence reads most similar to feline papillomavirus 2, which is the first evidence for this virus infecting snow leopards. The rectal swabs from all animals also showed evidence for the presence of small circular DNA viruses, predominantly Circular Rep-Encoding Single-Stranded (CRESS) DNA viruses and in one case feline anellovirus. Several of the viruses implicated in the present study could affect the health of snow leopards. In animals which are under environmental stress, for example, young dispersing individuals and lactating females, health issues may be exacerbated by latent virus infections. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1612 | |||
Permanent link to this record | |||||
Author ![]() |
Karnaukhov А. S., Korablev М. P., Kuksin А. N., Malykh S. V., Poyarkov А. D., Spitsyn S. V., Chistopolova М. D., Hernandez-Blanco J. A. | ||||
Title | Snow Leopard Population Monitoring Guidebook (English) | Type | Guidebook | ||
Year | 2020 | Publication | WWF | Abbreviated Journal | |
Volume | Issue | Pages | 165 | ||
Keywords | English | ||||
Abstract | The “Snow Leopard Population Monitoring Guidebook” is the result of a multiyear effort to study and monitor the status of key snow leopard populations in the Russian Federation conducted by WWF Russia specialists alongside colleagues in protected areas and the Severtsov Institute for Ecology and Evolution (Russian Academy of Sciences). The book provides the most recent data regarding the distribution and population of the snow leopard in three administrative subjects of the Russian Federation – Republics of Altai, Tyva, and Buryatiya. Optimal survey routes and a grid network for camera-trapping stations are discussed and are based on a previously-developed program for standardized monitoring and surveying of the snow leopard population. The most important part of this publication is the analysis of methodologies for evaluating the status of population groups of this rare cat – from the traditional route census approach to innovative systems for automated collection of field data. In addition, the results of multi-year work analyze snow leopard nutrition and evaluate the genetic diversity of the snow leopard population in Russia. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1604 | |||
Permanent link to this record | |||||
Author ![]() |
Karnaukhov А. S., Korablev М. P., Kuksin А. N., Malykh S. V., Poyarkov А. D., Spitsyn S. V., Chistopolova М. D., Hernandez-Blanco J. A. | ||||
Title | Snow Leopard Population Monitoring Guidebook (Russian) | Type | Guidebook | ||
Year | 2020 | Publication | WWF | Abbreviated Journal | |
Volume | Issue | Pages | 164 | ||
Keywords | Russian | ||||
Abstract | The “Snow Leopard Population Monitoring Guidebook” is the result of a multiyear effort to study and monitor the status of key snow leopard populations in the Russian Federation conducted by WWF Russia specialists alongside colleagues in protected areas and the Severtsov Institute for Ecology and Evolution (Russian Academy of Sciences). The book provides the most recent data regarding the distribution and population of the snow leopard in three administrative subjects of the Russian Federation – Republics of Altai, Tyva, and Buryatiya. Optimal survey routes and a grid network for camera-trapping stations are discussed and are based on a previously-developed program for standardized monitoring and surveying of the snow leopard population. The most important part of this publication is the analysis of methodologies for evaluating the status of population groups of this rare cat – from the traditional route census approach to innovative systems for automated collection of field data. In addition, the results of multi-year work analyze snow leopard nutrition and evaluate the genetic diversity of the snow leopard population in Russia. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1605 | |||
Permanent link to this record | |||||
Author ![]() |
Khanal, G., Mishra, C., Suryawanshi, K. R. | ||||
Title | Relative influence of wild prey and livestock abundance on carnivore-caused livestock predation | Type | Journal Article | ||
Year | 2020 | Publication | Ecology and Evolution | Abbreviated Journal | |
Volume | Issue | Pages | 1-11 | ||
Keywords | conservation conflict, human carnivore conflict, large mammalian carnivore, livestock depredation, Nepal, Shey Phoksundo National Park, snow leopard | ||||
Abstract | Conservation conflict over livestock depredation is one of the key drivers of large mammalian carnivore declines worldwide. Mitigating this conflict requires strategies informed by reliable knowledge of factors influencing livestock depredation. Wild prey and livestock abundance are critical factors influencing the extent of livestock depredation. We compared whether the extent of livestock predation by snow leopards Panthera uncia differed in relation to densities of wild prey, livestock, and snow leopards at two sites in Shey Phoksundo National Park, Nepal. We used camera trap-based spatially explicit capture–recapture models to estimate snow leopard density; double-observer surveys to estimate the density of their main prey species, the blue sheep Pseudois nayaur; and interview-based household surveys to estimate livestock population and number of livestock killed by snow leopards. The proportion of livestock lost per household was seven times higher in Upper Dolpa, the site which had higher snow leopard density (2.51 snow leopards per 100 km2) and higher livestock density (17.21 livestock per km2) compared to Lower Dolpa (1.21 snow leopards per 100 km2; 4.5 livestock per km2). The wild prey density was similar across the two sites (1.81 and 1.57 animals per km2 in Upper and Lower Dolpa, respectively). Our results suggest that livestock depredation level may largely be determined by the abundances of the snow leopards and livestock and predation levels on livestock can vary even at similar levels of wild prey density. In large parts of the snow leopard range, livestock production is indispensable to local livelihoods and livestock population is expected to increase to meet the demand of cashmere. Hence, we recommend that any efforts to increase livestock populations or conservation initiatives aimed at recovering or increasing snow leopard population be accompanied by better herding practices (e.g., predator-proof corrals) to protect livestock from snow leopard. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1611 | |||
Permanent link to this record | |||||
Author ![]() |
Khanyari, M., Zhumabai uulu, K., Luecke, S., Mishra, C., Suryawanshi, K. | ||||
Title | Understanding population baselines: status of mountain ungulate populations in the Central Tien Shan Mountains, Kyrgyzstan | Type | Journal Article | ||
Year | 2020 | Publication | Mammalia | Abbreviated Journal | |
Volume | Issue | Pages | 1-8 | ||
Keywords | conservation; human-use landscapes; hunting concession; mountain ungulates; population baselines; protected areas. | ||||
Abstract | We assessed the density of argali (Ovis ammon) and ibex (Capra sibirica) in Sarychat-Ertash Nature Reserve and its neighbouring Koiluu valley. Sarychat is a protected area, while Koiluu is a human-use landscape which is a partly licenced hunting concession for mountain ungulates and has several livestock herders and their permanent residential structures. Population monitoring of mountain ungulates can help in setting measurable conservation targets such as appropriate trophy hunting quotas and to assess habitat suitability for predators like snow leopards (Panthera uncia). We employed the double-observer method to survey 573 km2 of mountain ungulate habitat inside Sarychat and 407 km2 inside Koiluu. The estimated densities of ibex and argali in Sarychat were 2.26 (95% CI 1.47–3.52) individuals km-2 and 1.54 (95% CI 1.01–2.20) individuals km-2, respectively. Total ungulate density in Sarychat was 3.80 (95% CI 2.47–5.72) individuals km-2. We did not record argali in Koiluu, whereas the density of ibex was 0.75 (95% CI 0.50–1.27) individuals km-2. While strictly protected areas can achieve high densities of mountain ungulates, multi-use areas can harbour meaningful though suppressed populations. Conservation of mountain ungulates and their predators can be enhanced by maintaining Sarychat-like “pristine” areas interspersed within a matrix of multi-use areas like Koiluu. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1610 | |||
Permanent link to this record | |||||
Author ![]() |
Koju. N. P, , Bashyal, B., Pandey, B. P., Shah, S. N., Thami, S. ,Bleisch, W. V. | ||||
Title | First camera-trap record of the snow leopard Panthera uncia in Gaurishankar Conservation Area, Nepal | Type | Journal Article | ||
Year | 2020 | Publication | Oryx | Abbreviated Journal | |
Volume | Issue | Pages | 1-4 | ||
Keywords | Camera trap, corridor, Gaurishankar Conser- vation Area, Nepal, Panthera uncia, prey abundance, transboundary, snow leopard | ||||
Abstract | The snow leopard Panthera uncia is the flagship species of the high mountains of the Himalayas. There is po- tentially continuous habitat for the snow leopard along the northern border of Nepal, but there is a gap in information about the snow leopard in Gaurishankar Conservation Area. Previous spatial analysis has suggested that the Lamabagar area in this Conservation Area could serve as a transbound- ary corridor for snow leopards, and that the area may con- nect local populations, creating a metapopulation. However, there has been no visual confirmation of the species in Lamabagar. We set !! infrared camera traps for " months in Lapchi Village of Gaurishankar Conservation Area, where blue sheep Pseudois nayaur, musk deer Moschus leucogaster and Himalayan tahr Hemitragus jemlahicus, all snow leopard prey species, had been observed. In November #$!% at &,!$$ m, ' km south-west of Lapchi Village, one camera recorded three images of a snow leopard, the first photographic evidence of the species in the Conservation Area. Sixteen other species of mammals were also recorded. Camera-trap records and sightings indicated a high abun- dance of Himalayan tahr, blue sheep and musk deer. Lapchi Village may be a potentially important corridor for snow leopard movement between the east and west of Nepal and northwards to Quomolongma National Park in China. However, plans for development in the region present in- creasing threats to this corridor. We recommend develop- ment of a transboundary conservation strategy for snow leopard conservation in this region, with participation of Nepal, China and international agencies. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1622 | |||
Permanent link to this record | |||||
Author ![]() |
Maheshwari, A., Sathyakumar, S. | ||||
Title | Patterns of Livestock Depredation and Large Carnivore Conservation Implications in the Indian Trans-Himalaya | Type | Journal Article | ||
Year | 2020 | Publication | Journal of Arid Environments | Abbreviated Journal | |
Volume | Issue | Pages | 1-5 | ||
Keywords | Large carnivores Livestock depredation Participatory approach Snow leopard Kargil Himalaya | ||||
Abstract | Livestock is one of the major sources of livelihood for the agro-pastoral communities in central and south Asia. Livestock depredation by large carnivores is a wide-ranging issue that leads to economic losses and a deviance from co-existence. We investigated the grass root factors causing livestock depredation in Kargil, Ladakh and tested the findings of diet analysis in validating reported livestock depredation. Globally vulnerable snow leopard (Panthera uncia) and more common wolf (Canis lupus) were the two main wild predators. A total of 1113 heads of livestock were reportedly killed by wolf (43.6%) followed by unknown predators (31.4%) and snow leopard (21.5%) in the study site from 2009 to 2012, which comes to 2.8% annual livestock losses. Scat analysis also revealed a significant amount of livestock in the diet of snow leopard (47%) and wolf (51%). Poor livestock husbandry practices and traditional livestock corrals were found to be the major drivers contributing in the livestock depredation. Based on the research findings, we worked with the local communities to sensitize them about wildlife conservation and extended limited support for predator proof livestock corrals at a small scale. Eventually it helped in reducing conflict level and conserving the globally threatened carnivores. We conclude that a participatory approach has been successful to generate an example in reducing large carnivore-human conflict in the west Himalaya. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1609 | |||
Permanent link to this record | |||||
Author ![]() |
Murali,R., Ikhagvajav, P., Amankul, V., Jumabay, K., Sharma, K., Bhatnagar, Y. V., Suryawanshi, K., Mishra, C. | ||||
Title | Ecosystem service dependence in livestock and crop-based | Type | Journal Article | ||
Year | 2020 | Publication | Journal of Arid Environments | Abbreviated Journal | |
Volume | 180 | Issue | Pages | 1-10 | |
Keywords | Provisioning services Arid ecosystems Local communities Land-use | ||||
Abstract | Globally, in semi-arid and arid landscapes, there is an ongoing transition from livestock-production systems to crop-production systems, and in many parts of Asia's arid mountains, mining for minerals is also increasing. These changes are accompanied by a change in the generation and quality of ecosystem services (ES), which can impact human well-being. In this study, to better understand the impacts of such transitions, we quantified ES in two crop-based and three livestock-based production systems in the arid and semi-arid landscapes of the High Himalaya and Central Asia, specifically in the Indian Himalaya, Kyrgyz Tien Shan, and Mongolian Altai. Our results showed 1) high economic dependence (3.6–38 times the respective annual household income) of local farmers on provisioning ES, with the economic value of ES being greater in livestock-production systems (7.4–38 times the annual household income) compared to crop-production systems (3.6–3.7 times the annual household income); 2) ES input into cashmere production, the main commodity from the livestock-production systems, was 13–18 times greater than the price of cashmere received by the farmer; and 3) in the livestock production systems affected by mining, impacts on ES and quality of life were reported to be negative by majority of the respondents. We conclude that livestock-based systems may be relatively more vulnerable to degrading impacts of mining and other ongoing developments due to their dependence on larger ES resource catchments that tend to have weaker land tenure and are prone to fragmentation. In contrast to the general assumption of low value of ES in arid and semi-arid landscapes due to relatively low primary productivity, our study underscores the remarkably high importance of ES in supporting local livelihoods. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1603 | |||
Permanent link to this record | |||||
Author ![]() |
Pal, R., Bhattacharya, T., Sathyakumar, S. | ||||
Title | Woolly flying squirrel Eupetaurus Cinereus: A new addition to the diet of snow leopard Panthera Uncia | Type | Short Note | ||
Year | 2020 | Publication | Journal Bombay Natural History Society | Abbreviated Journal | |
Volume | 117 | Issue | Pages | ||
Keywords | |||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1606 | |||
Permanent link to this record | |||||
Author ![]() |
Poyarkov, A. D., Munkhtsog, B., Korablev, M. P., Kuksin, A. N., Alexandrov, D. Y., Chistopolova, M. D.,Hernandez-Blanco, J. A., Munkhtogtokh, O., Karnaukhov, A. S., Lkhamsuren, N., Bayaraa, M., Jackson, R. M., Maheshwari, A., Rozhnov, V. V. | ||||
Title | Assurance of the existence of a trans-boundary population of the snow leopard (Panthera uncia) at Tsagaanshuvuut – Tsagan- Shibetu SPA at the Mongolia-Russia border | Type | Journal Article | ||
Year | 2020 | Publication | Integrative Zoology | Abbreviated Journal | |
Volume | Issue | 15 | Pages | 224-231 | |
Keywords | FST, home range, Panthera uncia, snow leopard, trans-boundary population | ||||
Abstract | The existence of a trans-boundary population of the snow leopard (Panthera uncia) that inhabits the massifs of Tsagaanshuvuut (Mongolia) – Tsagan-Shibetu (Russia) was determined through non-invasive genetic analysis of scat samples and by studying the structure of territory use by a collared female individual. The genetic analysis included species identification of samples through sequencing of a fragment of the cytochrome b gene and individual identification using a panel of 8 microsatellites. The home range of a female snow leopard marked with a satellite Global Positioning System (GPS) collar was represented by the minimum convex polygon method (MCP) 100, the MCP 95 method and the fixed kernel 95 method. The results revealed insignificant genetic differentiation between snow leopards that inhabit both massifs (minimal fixation index [FST]), and the data testify to the unity of the cross-border group. Moreover, 5 common individuals were identified from Mongolian and Russian territories. This finding clearly shows that their home range includes territories of both countries. In addition, regular movement of a collared snow leopard in Mongolia and Russia confirmed the existence of a cross-border snow leopard group. These data support that trans-boundary conservation is important for snow leopards in both countries. We conclude that it is crucial for Russia to study the northern range of snow leopards in Asia. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | SLN @ rakhee @ | Serial | 1493 | ||
Permanent link to this record | |||||
Author ![]() |
Rashid, W., Shi, J., Rahim, I. U., Dong, S., Ahmad, L. | ||||
Title | Research trends and management options in human-snow leopard conflict | Type | Journal Article | ||
Year | 2020 | Publication | Biological Conservation | Abbreviated Journal | |
Volume | 242 | Issue | 108413 | Pages | 1-10 |
Keywords | Snow leopards, Systematic review, Compensation, Co-existence, Livestock, Human-wildlife conflict, Mitigation | ||||
Abstract | Conservation of the snow leopard (Panthera uncia) is challenging because of its threatened status and increase in human-snow leopard conflict (HSC). The area of occupancy of the snow leopard comprises mountainous regions of Asia that are confronted with various environmental pressures including climate change. HSCs have increased with a burgeoning human population and economic activities that enhance competition between human and snow leopard or its preys. Here we systematically review the peer-reviewed literature from 1994 to 2018 in Web of Science, Google Scholar, Science Direct and PubMed (30 articles), to evaluate the current state of scholarship about HSCs and their management. We determine: 1) the spatio-temporal distribution of relevant researches; 2) the methodologies to assess HSCs; 3) and evaluate existing interventions for conflict management; and 4) the potential options for HSC management. The aim of the current study is thus to identify key research gaps and future research requirements. Of the articles in this review, 60% evaluated the mitigation of HSCs, while only 37% provided actionable and decisive results. Compensation programs and livestock management strategies had high success rates for mitigating HSCs through direct or community-managed interventions. Further research is required to evaluate the efficacy of existing HSC mitigation strategies, many of which, while recommended, lack proper support. In spite of the progress made in HSC studies, research is needed to examine ecological and sociocultural context of HSCs. We suggest future work focus on rangeland management for HSC mitigation, thus ultimately fostering a co-existence between human and snow leopard. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | SLN @ rakhee @ | Serial | 1716 | ||
Permanent link to this record | |||||
Author ![]() |
Rashid, W., Shi, J., Rahim, I. U., Dong, S., Sultan, H. | ||||
Title | Issues and Opportunities Associated with Trophy Hunting and Tourism in Khunjerab National Park, Northern Pakistan | Type | Journal Article | ||
Year | 2020 | Publication | Animals | Abbreviated Journal | |
Volume | 10 | Issue | 597 | Pages | 1-20 |
Keywords | trophy hunting; mass tourism; Pamir; eco-tourism; human-Snow leopard conflict | ||||
Abstract | Trophy hunting and mass tourism are the two major interventions designed to provide various socioeconomic and ecological benefits at the local and regional levels. However, these interventions have raised some serious concerns that need to be addressed. This study was conducted in Khunjerab National Park (KNP) with an aim to analyze comparatively the socioeconomic and ecological impacts of trophy hunting and mass tourism over the last three decades within the context of sustainability. Focus Group Discussions (FGDs) with key stakeholders and household interviews were conducted to collect data on trophy hunting and mass tourism, and on local attitudes towards these two interventions in and around KNP. The results revealed that 170 Ibex (Capra sibirica) and 12 Blue sheep (Pseudois nayaur) were hunted in the study area over the past three decades, and trophy hunting was not based on a sustainable harvest level. Trophy hunting on average generated USD 16,272 annual revenue, which was invested in community development. However, trophy hunting has greatly changed the attitudes of local residents towards wildlife: a positive attitude towards the wild ungulates and strongly negative attitude towards wild carnivores. In addition, trophy hunting has reduced the availability of ungulate prey species for Snow leopards (Panthera uncia), and consequently, Snow leopards have increased their predation on domestic livestock. This has, in turn, increased human–snow leopard conflict, as negative attitudes towards carnivores result in retaliatory killing of Snow leopards. Furthermore, according to ocial record data, the number of tourists to KNP has increased tremendously by 10,437.8%, from 1382 in 1999 to 145,633 in 2018. Mass tourism on average generated USD 33,904 annually and provided opportunities for locals to earn high incomes, but it caused damages to the environment and ecosystem in KNP through pollution generation and negative impacts on wildlife. Considering the limited benefits and significant problems created by trophy hunting and mass tourism, we suggest trophy hunting should be stopped and mass tourism should be shifted to ecotourism in and around KNP. Ecotourism could mitigate human–Snow leopard conflicts and help conserve the fragile ecosystem, while generating enough revenue incentives for the community to protect biodiversity and compensate for livestock depredation losses to Snow leopards. Our results may have implications for management of trophy hunting and mass tourism in other similar regions that deserve further investigation. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1621 | |||
Permanent link to this record | |||||
Author ![]() |
Rode, J., Pelletier, A., Fumey, J., Rode, S., Cabanat, A. L., Ouvrard, A., Chaix, B., White, B., Harnden, M., Xuan, N. T., Vereshagin, A., Casane, D. | ||||
Title | Diachronic monitoring of snow leopards at Sarychat-Ertash State Reserve (Kyrgyzstan) through scat genotyping: a pilot study | Type | Journal Article | ||
Year | 2020 | Publication | bioRxiv | Abbreviated Journal | |
Volume | Issue | Pages | 1-21 | ||
Keywords | snow leopard, noninvasive genotyping, population dynamics, microsatellite, relatedness, diachronic monitoring, citizen science, Central Asia | ||||
Abstract | Snow leopards (Panthera uncia) are a keystone species of Central Asia’s high mountain ecosystem. The species is listed as vulnerable and is elusive, preventing accurate population assessments that could inform conservation actions. Non-invasive genetic monitoring conducted by citizen scientists offers avenues to provide key data on this species that would otherwise be inaccessible. From 2011 to 2015, OSI-Panthera citizen science expeditions tracked signs of presence of snow leopards along transects in the main valleys and crests of the Sarychat-Ertash State Reserve (Kyrgyzstan). Scat samples were genotyped at seven autosomal microsatellite loci and at a X/Y locus for sex identification, which allowed estimating a minimum of 11 individuals present in the reserve from 2011 to 2015. The genetic recapture of 7 of these individuals enabled diachronic monitoring, providing indications of individuals’ movements throughout the reserve. We found putative family relationships between several individuals. Our results demonstrate the potential of this citizen science program to get a precise description of a snow leopard population through time. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1602 | |||
Permanent link to this record |