|   | 
Details
   web
Records
Author Rode, J., Pelletier, A., Fumey, J., Rode, S., Cabanat, A. L., Ouvrard, A., Chaix, B., White, B., Harnden, M., Xuan, N. T., Vereshagin, A., Casane, D.
Title Diachronic monitoring of snow leopards at Sarychat-Ertash State Reserve (Kyrgyzstan) through scat genotyping: a pilot study Type Journal Article
Year 2020 Publication bioRxiv Abbreviated Journal
Volume Issue Pages 1-21
Keywords snow leopard, noninvasive genotyping, population dynamics, microsatellite, relatedness, diachronic monitoring, citizen science, Central Asia
Abstract (up) Snow leopards (Panthera uncia) are a keystone species of Central Asia’s high mountain ecosystem. The species is listed as vulnerable and is elusive, preventing accurate population assessments that could inform conservation actions. Non-invasive genetic monitoring conducted by citizen scientists offers avenues to provide key data on this species that would otherwise be inaccessible. From 2011 to 2015, OSI-Panthera citizen science expeditions tracked signs of presence of snow leopards along transects in the main valleys and crests of the Sarychat-Ertash State Reserve (Kyrgyzstan). Scat samples were genotyped at seven autosomal microsatellite loci and at a X/Y locus for sex identification, which allowed estimating a minimum of 11 individuals present in the reserve from 2011 to 2015. The genetic recapture of 7 of these individuals enabled diachronic monitoring, providing indications of individuals’ movements throughout the reserve. We found putative family relationships between several individuals. Our results demonstrate the potential of this citizen science program to get a precise description of a snow leopard population through time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1602
Permanent link to this record
 

 
Author Solari, K. A., Morgan, S., Poyarkov, A. D., Weckworth, B., Samelius, G., Sharma, K., Ostrowski, S., Ramakrishnan, U., Kubanychbekov, Z., Kachel, S., Johansson, O., Lkhagvajav, P., Hemmingmoore, H., Alexandrov, D. Y., Bayaraa, M., Grachev, A., Korablev, M. P., Hernandez-Blanco, J. A., Munkhtsog, B., Rosenbaum, B., Rozhnov, V. V., Rajabi, A. M., Noori, H., Armstrong, E. E., Petrov, D. A.
Title Extreme in Every Way: Exceedingly Low Genetic Diversity in Snow Leopards Due to Persistently Small Population Size Type Journal Article
Year 2023 Publication bioRxiv Abbreviated Journal
Volume Issue Pages 1-24
Keywords
Abstract (up) Snow leopards (Panthera uncia) serve as an umbrella species whose conservation benefits their high-elevation Asian habitat. Their numbers are believed to be in decline due to numerous Anthropogenic threats; however, their conservation is hindered by numerous knowledge gaps. They are the least studied genetically of all big cat species and little is known about their historic population size and range, current population trends, or connectivity across their range. Here, we use whole genome sequencing data for 41 snow leopards (37 newly sequenced) to assess population connectivity, historic population size, and current levels of genetic diversity. Among our samples, we find evidence of a primary genetic divide between the northern and southern part of the range around the Dzungarian Basin and a secondary divide south of Kyrgyzstan around the Taklamakan Desert. However, we find evidence of gene flow, suggesting that barriers between these groups are permeable. Perhaps most noteworthy, we find that snow leopards have the lowest genetic diversity of any big cat species, likely due to a persistently small population size throughout their evolutionary history. Without a large population size or ample standing genetic variation to help buffer them from any forthcoming Anthropogenic challenges, snow leopard persistence may be more tenuous than currently appreciated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number SLN @ rakhee @ Serial 1739
Permanent link to this record
 

 
Author Sharma, R. K., Sharma, K., Borchers, D., Bhatnagar, Y. V., Suryawanshi, K. S., Mishra, C.
Title Spatial variation in population-density, movement and detectability of snow leopards in 2 a multiple use landscape in Spiti Valley, Trans-Himalaya Type Journal Article
Year 2020 Publication bioRxiv Abbreviated Journal
Volume Issue Pages
Keywords Co-existence; land sharing; population-density; spatial capture recapture; Pseudois nayaur Capra sibirica; ungulates; livestock.
Abstract (up) The endangered snow leopard Panthera uncia occurs in human use landscapes in the mountains of South and Central Asia. Conservationists generally agree that snow leopards must be conserved through a land-sharing approach, rather than land-sparing in the form of strictly protected areas. Effective conservation through land-sharing requires a good understanding of how snow leopards respond to human use of the landscape. Snow leopard density is expected to show spatial variation within a landscape because of variation in the intensity of human use and the quality of habitat. However, snow leopards have been difficult to enumerate and monitor. Variation in the density of snow leopards remains undocumented, and the impact of human use on their populations is poorly understood. We examined spatial variation in snow leopard density in Spiti Valley, an important snow leopard landscape in India, via spatially explicit capture recapture analysis of camera trap data. We camera trapped an area encompassing a minimum convex polygon of 953 km . We estimated an overall density of 0.49 (95% CI: 0.39-0.73) adult snow leopards per 100 km . Using AIC, our best model showed the density of snow leopards to depend on wild prey density, movement about activity centres to depend on altitude, and the expected number of encounters at the activity centre to depend on topography. Models that also used livestock biomass as a density covariate ranked second, but the effect of livestock was weak. Our results highlight the importance of maintaining high density pockets of wild prey populations in multiple use landscapes to enhance snow leopard conservation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1620
Permanent link to this record